

Release Note

Release Date : December 2017

Product Ver. : Civil 2018 (v2.1)

DESIGI OF CIVIL STRUCTURES

Integrated Solution System for Bridge and vivil Engineering

Enhancements

Analysis & Design

- 1) Plate Beam and Plate Column Design as per Eurocode
- 2) Accelerating, breaking and centrifugal force in Moving Load (AASHTO and PENDDOT)
- 3) Improvement on Traffic Lane Function
- 4) Addition of Legal & Permit Load as per AASHTO LRFD
- 5) Improvement of Moving load analysis as per Poland Standard
- 6) Moving Load Optimization to Poland Standard
- 7) Improvement on Steel Tub torsional resistance
- 8) Construction Stage Analysis considering material non-linearity
- 9) Addition of artificial earthquake generation function of dynamic analysis
- 10) Seismic analysis based on Base Line Correction when Multiple Support Excitation is applied
- 11) Implementation of Australian Time Dependent Material property standard
- 12) Implementation of Steel Girder Design as per IRC 24 2010

Pre & Post-Processing

- 1) Revit 2018 interface
- 2) Reinforcement data interchange between Civil and GSD
- 3) Improvement on Bridge wizard function

3

1. Plate Beam and Plate Column (1D) Design Method

- Plate elements can now be designed with the same method of designing conventional 1D elements such as Beam or Column as per Eurocode.
- The plate design is performed for defined sub-domain. Member Type are chosen according to the purpose of the design. (e.g. Plate Beam (1D) : Slab Design and Plate Column (1D) : Abutment / Sidewall Design).
- Rebar Direction for the main rebar and distribution rebar can be defined using Local Coordinate System, UCS or Reference Axis.
- Node/Element > Elements > Define Sub-Domain

1. Plate Beam and Plate Column (1D) Design Method

- The results of plate design can be checked in table format and also both Graphic and Detail report can be outputted.
- Positive/Negative Bending moment capacity, shear capacity and crack checks can be performed and the detail results can be obtained from this function.
- From this version, the benefit of axial force in calculation of flexural strength can be considered by considering Axial-Moment Interaction (P-M Interaction) for plate column. The Axial-Moment Diagram can be obtained from the graphic result of plate column design and checking.

Plate Beam Check Result Dialog

Design > RC Design > Plate Beam/Column

	Rebar can be inputtea using		Results :	Strengt	th 🔘 Serv	viceabilit	y	· · ·											
Design Code	either Number or CTC method.		Sub-Do main	SEL	Major Dir	снк	Pos	Use_As	Elem. N	ode	LCB_M	Mu	Mr	Ratio_M	Elem.	Node	LCB_V	Vu	рV
🔣 Strength Reduction Factors	Rebar Input for Plate Ream		Top_I		Dir2	ок	Pos	0.0658	657	C	4 3.	89766	21.3610	0.1825	137	162	3	0.22455	7.290
Modify Concrete Material			Top M	Г	Dir2	ок	Pos	0.1317	673	C	4 6.	63533	39.4669	0.1681	922	971	4	0.12807	7.290
Limiting Maximum Rebar Ratio	Name Top_M			-			Neg Pos	0.1317	938 9 697	088 C	4 0. 4 3.	23507 89766	39.4669 21.3610	0.0060					_
Limiting Minimum Section Size	Main Rebar Distribution Bar		Top_J		Dir2	ОК	Neg	0.0658	191	154	3 5.	80864	21.3610	0.2719	954	935	3	0.22455	7.290
Design Criteria for Rebars	Num @ CTC									F									
🔲 Scale Up Factor for Column										N	IDAS/Civil - I	RC-Plate	Bean Check	ing [Eur	rocode2-2	:05]		C	ivii 2018
Serviceability Parameters	As 1.58 in²/ft Layer 1										MIDAS	(Modeling	, Integrate	ed Design	& Analys	is Softwa	tre)		
Beam Section Data for Design	Layer CTC Size1 Size2 Dt										RC-P1 Based	te Membe On AASH	er(Plate Ber HTO-LFRD12.	m/Column) Eurocode/) Analysi: 2-2:05	s and Des	sign		
Beam Section Data for Checking	1 6 #8 2.5										MIDAS	Informat	ion Techno	logy Co.,L	Ltd.	(c)SINCE (MID/	1989 AS IT)		
Column Section Data for Design	The amount of rebar (As)	1. Design Condition								Ц	MIDAS	lí Desig Home	n Developma ePage : www	ent Team .MidasUser	r.com				
Column Section Data for Checking	is shown directly.	Design Type Plate Beam (1D)									MIDAS	/Civil W	Version 8.7	.0			ļ		
Column General Section Data for Checking		Design Code Eurocode2-2.05									+.DEFINITIO	N OF LOAD	CONBINATIO	DNS WITH S	SCALING U	IP FACTOR:	3.		
	Bottom	Unit System kips, in, / in Material Data fck = 5, fyk = 60, f	fyw = 60 ksi							Tal	LCB C I	oadcase	Name(Factor	r) + Loado	case Name	(Factor)	+ Loadcase	Name(Facto	or)
Plate Beam Data for Design	As 1.58 in²/ft Layer 1 ▼	Thickness 10 in								Ц	2 1		SW(1.25) SW(1.25) SW(1.50)		EYE	1.300	+ + +	EH(0.9 EH(1.3	10) 30)
Rebar Input for Plate Beam	Layer CTC Size1 Size2 Db	 Section Diagram Jaganjanjanjanjanjanjanjanjanjanjanjanjanja	oja.oja.oj								5 2		SW(1.000 SW(1.000 SW(1.000)) •)) •	EY	1.000	÷	EH(1.0 EH(1.0	10) 10)
Plate Beam Data for Checking	1 6 #8 2.5			Eleme	ent No: 1067	7				8			0.01.1						
🗐 Plate Column Data for Design	E		• • •								IUAS/CIVIT - I	RU-Plate	Bean Check	ing [Eur	rocodez-z	:05]		L.	1011 2018
Rebar Input for Plate Column						-					*.NIUAS/C *.PROJECT	IVII - RD	- PLATE BEA	AM Analysi	is/Uesign	Program			
Plate Column Data for Checking		Rebar Pattern Layer 1	Top(Nega #8@3.00	tive) Bo #3	@3.00						+.UESTEN I +.SUB-DOM	SUUE : I AIN	Eurocode2-2 : Top_1	2:U5, 4 Member	r Type = 1	SIEM : K PLATE BE/	ips, in, /i W(1D), D	n ir = 1)	
Consulta Davian Tables	V Stirrup	Total Rebar Area Using Stirrups Spa	Ast = 0.52666 acing : 2.0-#3	7 in ^a @12*							*.UESURIP Thickne Unit Vi	IIUN UF PI SS dth	LATE BEAM L	10.00	em : 1067 00 in. 1 in.				
	Size #3 -	3. Bending Moment Capacity									Voncreti Nain Rei Stirrup	e Strengt bar Stren s St <u>r</u> engti	ch (fck) heth (fyk) ch (fyw)_	3	5.0 60.0 60.0	UU ksi. DO ksi. DO ksi.			
Concrete Code Design	Spacing 0 in			Top(Negativ	ve)		Bot	tom(Positive	e)		Modulus < Selecti	of Elast ed Elemen	ticity (Es)	-	29000.0	UU ksi.			
Concrete Code Check	Number 0	Element No.		1020				1067			833-83 946-97 42-114	5to964by4 9 1023 10 5to1149 1	12 863 893 9 127 1033 104 154 1174 11	41 1058 10 41 1058 10 190 1203tc	by58 916 : 060 1067 01332by43	945 967 1089 1119 1209 122	3 1135 1136 8 1243 124	40 974toll 1139 1140 8 1249 125	20 11 5 1
		Load Combination Mr	54	64.05			34_	64.05			< Positi P-M_Ed	262 1283 ve Bendin	1290 1303to 19 Moment > 4,87 in-ki	o13U5 1311 ips∕in., E	1 1312 13 ELEM = 1	067, LCE	1355 1368 1: 3 = 4, N	374to1376 DDE = 14	1378to1393by 18
Top and Bottom rebar data can be	Add Modify Delete	Check Ratio (Mu/Mr)		U. 4488			(u.U761			< Negati N-M_Ed < Shear I	ve Bendin Force >	ng Moment > 28.75 in−ki	ips/in., E	ELEN = 1	020, LCE	3 = 3, N	00E = 14	54
inputted separately for multiple loca	tions. ID Name	Using Rebar(As)		6.69				6.69			V_Ed +.REINFOR	- CEMENT PA	1.05 kips/ ATTERN :	/in. , E	ELEN - 1	136, LCE	s = 3, N	UUE = 15	11
	1 Top_I	4. Shear Capacity									Loca	tion i	di(in	.) F	RebarAsi(in^2/in)		
	2 Top_M	Load Combination S4_El	Hmax = 1 OF	215							Top Botto	on 1	1.000	J #807 J #807	76.20 76.20	0.2633	; } 		
	3 Top_J	Applied Shear Strength V_Ed Shear Strength (Out of plane) V_Rd Shear Ratio V Ed	= 1.05 = 1.07	052 215 / 1.0	7052 - 0.	.983 <	1.000 .	0.	к		Stir	rups : 2.0	.U-#3 012 ISITIVE BENI	TING NONEN	NT CAPACI	TV.			
	Close		rank		lone	-+				-			~		:1 P	000	~+		
	Close	G	raph	пс к	epol	T							υ	eta	II K	ep0	π		

1. Plate Beam and Plate Column (1D) Design Method

- The results of plate design can be checked in table format and also both Graphic and Detail report can be outputted.
- Positive/Negative Bending moment capacity, shear capacity and crack checks can be performed and the detail results can be obtained from this function.
- From this version, the benefit of axial force in calculation of flexural strength can be considered by considering Axial-Moment Interaction (P-M Interaction) for plate column. The Axial-Moment Diagram can be obtained from the graphic result of plate column design and checking.

Graphic Report

2. Export Centrifugal, Acceleration & Braking forces (AASHTO LRFD and PennDOT)

- It is possible to export centrifugal, acceleration & braking forces as different static load cases according to the AASHTO LRFD and PennDOT.
- It is possible to import vertical centrifugal (C), longitudinal acceleration (AA) and Braking (BA) as different static load cases.

 Results > Moving Load > M Results > Moving Load > Ba Tree Menu X Infl. Lines Infl. Surf. MVL Tra Batch C Beam Forces/Moments 	loving Tracer > Write Min/Max Load to atch Conversion from MVLTRC to Station	D File C Load MDAS/Test Editor - [M/max1My223] File Edit View Vindow Help C C C C C C C C C C C C C C C C C C C	Tree Menu
MVmax: 1 Key Element: 1 Scale Factor: 1.000000 Parts Image: State of the state of th		D0010 WK, FT, BTU, FL D0011 =UERSIOH D0012 S.A.0 D0013 =STLDCASE D0014 =STLDCASE D0015 =UERSIOH D0017 =STLDCASE D0018 =STLDCASE D0019 =USE-STLD, HUmax1Hy223 D0019 =USE-STLD, HUmax1Hy223 D0021 =SEAHLOOD D0022 +SEEMLOOD SB, EEMH CON, TOM, TOM, TOR, HOR, NO, BC, HO, N. D0022 =SEAHLOOD SB, EEMH CON, CON, CON, CZ, HO, N. D0022 =SB, EEMH, CON, LOAD, CZ, HO, N. D0023 =BEAHLOAD, CZ, HO, N. D0024 115, EEMH, LIST, CON,LOAD, CZ, HO, N. D0025 3, EEMH, CONLOAD, CZ, HO, N. D0026 3, EEMH, CONLOAD, CZ, HO, N. D0027 3, EEMH, CONLOAD, CZ, HO, N. D0028 3, EEMH, CONLOAD, CZ, HO, N. D0029 3, EEMH, CONLOAD, CZ, HO, N. D0029 3, EEMH, CONLOAD, CZ, NO, N. D0029 3, EEMH, CONLOAD, CZ, NO, N. D0029 3	Selected Node
Fx Fy Fz Mx My Mz Mb Mt Mw	Moving Load Converted to Static Load Vertical Loads Centrifugal Forces Staking Force Additional Data	BEAH , CONLOAD, CZ, NO 0.7500000000, 5.60406, 0.0000000000, 0, 0, 0, 0, 0, BEAH , CONLOAD, CZ, NO 0.7500000000, 5.60406, 0.0000000000, 0, 0, 0, 0, BEAH , CONLOAD, CZ, NO 0.7500000000, 5.60406, 0.0000000000, 0, 0, 0, 0, BEAH , CONLOAD, CZ, NO 0.7500000000, 5.60406, 0.0000000000, 0, 0, 0, 0, BEAH , CONLOAD, CZ, NO 0.7500000000, 5.60406, 0.0000000000, 0, 0, 0, 0, BEAH , CONLOAD, CZ, NO 0.7500000000, 5.60406, 0.0000000000, 0, 0, 0, 0, BEAH , CONLOAD, CZ, NO 0.7500000000, 5.60406, 0.0000000000, 0, 0, 0, 0, BEAH , CONLOAD, CZ, NO 0.7500000000, 5.60406, 0.0000000000, 0, 0, 0, 0, BEAH , CONLOAD, CZ, NO 0.7500000000, 5.60406, 0.0000000000, 0, 0, 0, 0, BEAH , CONLOAD, CZ, NO 0.7500000000, 5.60406, 0.0000000000, 0, 0, 0, 0, BEAH , CONLOAD, CZ, NO 0.7500000000, 5.60406, 0.0000000000, 0, 0, 0, 0, BEAH , CONLOAD, CZ, NO 0.7500000000, 5.60406, 0.0000000000, 0, 0, 0, 0, BEAH , CONLOAD, CZ, NO 0.7500000000, 5.60406, 0.00000000000,	3/4 1 Components Fx Fx Fy Mx My Max My
Contour Contour	Design Speed 100 Radius of Curvature 700 Factor for Centrifugal Force (a) 4/3 (Other than Fatigue) (b) 1.0 (Fatigue)	ft/sec Moving Load Converted to Static Load ft Additional Data Design Speed 100 Radius of Curvature 700	Additional Forces
Maximum Value : Write Min/Max Load to File	Curve Type for Horizontal Force Direction © Concave File Name C:\#Users\#nsk0201\#Desktop\#Demo1\#Demo\#MVmax1My1.mct	Factor for Centrifugal Force	File Name C: \Users\Users\Usektop\Usektop\Users
Apply Close	ок Export dialog for a	Cancel OK Cancel	Apply Close

2. Export Centrifugal, Acceleration & Braking forces (AASHTO LRFD and PennDOT)

- It is possible to export centrifugal, acceleration & braking forces as different static load cases according to the AASHTO LRFD and PennDOT.
- It is possible to import vertical centrifugal (C), longitudinal acceleration (AA) and Braking (BA) as different static load cases.
- Results > Moving Load > Moving Tracer > Write Min/Max Load to File
- Results > Moving Load > Batch Conversion from MVLTRC to Static Load

Acceleration & Braking

The centrifugal force shall be calculated as per AASHTO LRFD 3.6.3:

$$C = f \frac{v^2}{gR}$$

where:

v = highway design speed (ft/s)

f = 4/3 for load combination other than fatigue and 1.0 for fatigue

- g = gravitational acceleration: 32.2 (ft/s^2)
- R = radius of curvature of traffic lane (ft)

C value will be applied to the axle load to calculate centrifugal force.

The braking force shall be taken as the greater of:

- 25 % of the axle weights of the design truck or tandem.
- 5 % of the (design truck + lane load) or 5 % of the (design tandem + lane load).
- * The multiple presence factors shall apply.

* Dynamic Load Allowance shall not be considered.

* Direction of acceleration will be the same as vehicle moving direction and direction of braking will be the opposite.

3. Improvement on traffic lane function

- Traffic Lane Optimization function has been changed to Transverse Lane Optimization.
- Previously vehicle was positioned at the middle and both left and right ends within each traffic lane to find the worst transverse effect of the moving load. The vehicle will now be positioned at the middle and left and right ends within the allowable width specified below the Transverse Lane Optimization function.
 - Load > Moving Load > Traffic Line/Surface Lanes

From midas Civil 2018 v2.1

Vehicle was positioned in the multiple positions within the specified Lane width in the previous version. From midas Civil 2018 v2.1, vehicle will be positioned at the middle and additionally left and right ends of specified 'Allowable Width' if Transverse Lane Optimization function is used.

Allowable Width can be defined by checking on the Transverse Lane Optimization option and the default value of Allowable Width is taken from the Lane Width.

4. Addition of Legal & Permit Load as per AASHTO LRFD

Addition of Legal & Permit Load in the user defined vehicle option to consider the various conditions where the span of the structure is over or under 200ft.

Load > Moving Load > Vehicles (AASHTO LRFD)

Define User Defined Vehicular Load $ imes$	Define User Defined Vehicular Load $ imes$
Load Type Truck/Lane Legal/Permit Load Train Load Permit Truck	 Load Type Truck/Lane e Legal/Permit Load Train Load Permit Truck
Vehicular Load Properties Vehicular Load Name : © Legal Type © Permit Type	Vehicular Load Properties Vehicular Load Name : Permit © Legal Type © Permit Type
For less than 200ft span $\begin{array}{c} P_1 & P_2 & P_3 & P_1 \\ \hline & & & & \\ \hline & & & \\ P_1 & P_2 & P_3 & P_1 \\ \hline & & & \\ P_1 & P_2 & P_3 & P_1 \times m_2 \\ \hline & & & & \\ \hline & & & \\ For over than 200ft span \end{array}$	For less than 200ft span $ \begin{array}{c} $
For defined negative moment and reactions at interior P1 P2 P3 Pn×mz P1 P2 P3 Pn×mz ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ	For over 200ft span and defined negative moments $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
Truck Load D# Lane Load P# D# Add w 0.2 kips/ft No Load(ki Spacing * Insert m 75 % 1 10,8 Modify 3 21,6 * Modify Joint * * Delete * Dist, 30 ft Imfact Factor 25 % * * * *	Truck Load Lane Load P# D# Add w 0.2 kips/ft 1 20 2 24 4 m 0 % Dist, 0 1 25
OK Cancel Apply	OK Cancel Apply

Addition of Legal/Permit Load as per AASHTO LRFD

Normal analysis result:

Legal Load

- A. Span length of all traffic lanes are under than 200ft : Concentrated Load
- B. If more than one traffic lane span is over 200ft : max/min[Concentrated Load, Concentrated Load x 0.75 + UDL(0.2 kips/ft)]

Negative moment and reaction at interior pier:

- A. Span length of all traffic lanes are under 200ft : max/min[Concentrated Load, two Concentrated Loads with 30ft spacing x 0.75 + UDL(0.2kips/ft)]
- B. If more than one traffic lane span is over 200ft : max/min[Concentrated Load, Concentrated Load x 0.75 + UDL(0.2 kips/ft), two Concentrated Loads with 30ft spacing x 0.75 + UDL(0.2kips/ft)]

Permit Load

Normal analysis result: Concentrated Load

Negative moment and reaction at interior pier:

- A. Span length of all traffic lanes are under than 200ft : Concentrated Load
- B. If more than one traffic lane span is over 200ft : max/min[Concentrated Load, Concentrated Load x 0.75 + UDL(0.2 kips/ft)]

Impact factor is only applied to concentrated load and the span length is calculated based on span start check of traffic lane

MIDAS

5. Moving Load analysis improvement as per Poland Standard

- In the previous versions, uniform distribution loads were included for Vehicle 2S → Now, uniform distribution loads were excluded for Vehicle 2S
- In the previous versions, concentrated forces for Vehicle K can be applied to more than 2 lanes → Now, concentrated forces for Vehicle K are applied only one critical lane.
- In the previous versions, uniform distribution loads were calculated by wheel spacing → Now, uniform distribution loads are calculated by land width.
- Load > Moving Load > Vehicles **Previous version** PN-85/S-10030 - RoadBridge Previous version Vehicular Load Properties Vehicular Load Name : Vehicle 2S Vehicular Load Type : Vehicle 2S Select Vehicle : Class A x New version PN-85/S-10030 - RoadBridge Vehicular Load Properties Vehicular Load Name : Vehicle 2S D1 D2 Vehicle 2S Vehicular Load Type : Select Vehicle Class A 4e-00 q No Load(kN) Spacing(mm) 1000 120 3600 а 240 1200 240 end D1 Dz New version m No Load(kN) Spacing(m) V Dynamic Amplification Factor 120 💿 User Input 3,6 Auto $\phi = 1.35 - 0.005L (1 \le \phi \le 1.325)$ 240 1,2 2 240 end

6. Moving Load Optimization to Poland Standard

- In the previous versions, moving load analysis was used to find critical vehicle locations on bridges in the longitudinal direction. The critical locations of vehicles in the transverse direction were determined by the user based on their experiences or trial-and-error approach.
- Now, Moving Load Optimization complements and extends the capabilities of moving load analysis and helps to significantly simplify the evaluation of critical vehicle locations. The critical locations of vehicles will be identified in the transverse direction as well as longitudinal direction according to the code provision.
- It reduces the amount of time spent defining lanes and leads to more economical design.
- Other regional codes will be included in the next upgrades.
- Load > Moving Load > Traffic Line/Surface Lane > Moving Load Optimization
- Load > Moving Load > Moving Load Cases

Road Bridge

Lane Name : Carriage	eway Properties		Load Case Name M Description	VO Vehicle ation				
Start End a : Eccentricity		Select Load Model Vehicle S / Vehicle 2S Type Vehicle K Type Optimization Min, Vehicle Distance 1.1 m						
Optimization Lane Lane Width Anal, Lane Offset Wheel Spacing Margin Eccentricity Vehicular Load Distribution	16 3.5 0.5 1.9 0.55 0	m m m m m	Load Case Data Loaded Lane Min, Number of Vehic Max, Number of Vehic Loading Effect Combined Assignment Vehicle	Carriageway				

- The program will generate the centerlines of vehicles in the transverse direction within the carriageway width.
- The spacing of the centerlines is defined by the user. (Anal. Lane Offset)
- The first centerline will be generated at the centerline of carriageway.
- The second centerline will be generated away from the first centerline by the value of "Anal. Lane Offset" to the both left and right side.
- More centerlines will be generated by the user-defined spacing within the carriageway.

- Vehicle centerlines which does not satisfy the requirement of minimum spacing between vehicle and boundary of carriageway and minimum s pacing between vehicles will be removed from the vehicle application.
- For example, the three centerlines in the figure below will be removed from the vehicle application.

Required Steps

1. Select 'Moving Load Optimization' function.

2. Define Carriageway data.

7. Improvement on Steel Tub Torsional Resistance

- Steel tub sections have very low inherent torsional resistance. Hence, practically the top flanges of a steel tub are always connected via a bracing to increase this torsional resistance.
- Ignoring this torsional resistance can lead to erroneous results in pre-composite stage, especially in cases where torsional rigidity plays important role. Example of such cases would be bridges with skew and curvature, wherein the bearing reactions would be greatly altered.
- General practice in such cases is to idealize this tub section as a box section, wherein the thickness of the top flange is calculated manually depending on the type and spacing of the bracings.
- With the latest release in midas Civil, the user can now provide this equivalent flange thickness for steel tub composite section. This thickness would only increase the torsional resistance of the steel tub in the pre-composite stage only.
- Properties > Section > Section Properties > Composite > Steel-Tub (Type 1)/(Type 2)

Section Data	×
DB/User Value SRC Co	mbined PSC Tapered Composite Steel Girder
Section ID 1	Name
Se Pe	Section Type : Steel-Tub (Type2) V
Bot B4 B5 B6 Bc Top B1 B2 B3 Hh Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi	Steel-Box (Type 1) Symmetric Secti Steel-I (Type 1) Distance from Refi Steel-Box (Type 1) Steel-Box (Type 1) Steel-Box (Type 2) Sg 0 Top Steel-I (Type 2) Slab Composite-I Bc 0 tc Girder User
	B1 0 B6 0 tw2 0 m
	B2 0 H 0 bf1 0 m
Z	B3 0 t1 0 bf2 0 m
ů v	B4 0 t2 0 tfp 0 m

Add/Modify Plastic Material

Name

Plasticity Data

Diliation Angle

Material Data

General

Material ID

Elasticity Data

Type of Design

Type of Material

Isotropic

Plasticity Data Plastic Material Name

Concrete

Specific Heat

Damping Ratio

Thermal Transfer

Heat Conduction

5

Concr

CDM

0

0

0.05

-

Inelastic Material Properties for Fiber Model

None

Eccentricity fbo/fco

K Viscosi

Compr

Tensile

8. Construction Stage Analysis considering Material Nonlinearity

- Construction stage analysis with material nonlinear is supported.
- Plastic model for material can be defined in dialog box of 'Plastic Material' and 'Material Data'

Step 2. Define Material Nonlinear

Setting for Construction Stage Analysis with Material nonlinear

×

Conc(CMD)

KSCE-LSD15(RC)

-

Apply

Code

None

Cancel

30 [deg]

0

Name

Steel

Standard DB Concrete Standard

DB C30

-

Rebar

kcal/N·[C]

OK

kcal/mm·hr·[C]

1.16

Step 1. Define Plastic Material Data

Model

Concrete-Damage

Nonlinear Analysis Control	—	Construction Stage Analysis Control Data
Nonlinear Type	Material Nonlinear	Final Stage CS1 CS1 CS1 CS1 CS1 CS1 CS1 CS
Iteration Method		Analysis Option
Newton-Raphson O Arc-Length O	Displacement-Control	Independent stage Accumulative stage
Number of Load Steps :	1	Include Time Dependent Effect Time Dependent Effect Control
Maximum Number of Iterations/Load Step :	5	Cable-Pretension Force Control
· · · · · · · · · · · · · · · · · · ·		Internal Force External Force Add Replace
Conversion Oritoria		Composite Section
	0.001	Load Cases to be Distinguished from Dead Load for C.S. Output
Energy Norm : Bisslandstate Norm :	0.001	Load Case : Idc1 VIII Load Case
Usplacement Norm :	0.001	
Remove Nonlinear Analys	OK	Remove Construction Stee
	Linear Model	Material nonlinear Mo

Step 3. Define Construction stage analysis Option

9. Addition of artificial earthquake generation function of dynamic analysis

- Spectral load and time history load used for dynamic analysis (Response Spectrum Analysis and Time History Analysis) can be generated as artificial seismic waves.
- It is possible to apply dynamic load with various variables through artificial earthquake generation referring to Design Spectrum according to country code.
 - Tools > Data Generator > Artificial Earthquake

10. Seismic analysis based on Base Line Correction when Multiple Support Excitation is applied

- Added the function to correct each point acceleration according to the base line which is the standard of acceleration loading with multi points.
- Displacement convergence over time using Base Line Correction method.
- Load > Dynamic Loads > Multiple Support Excitation

11. Time Dependent Materials as per Australian Standard (AS 5100.5 – 2017)

• Time dependent material properties: Updated Creep and Shrinkage can be defined as per AS 5100.5 – 2017.

Properties > Time Dependent Material > Creep/Shrinkage

11. Time Dependent Materials as per Australian Standard (AS 5100.5 – 2017)

- Time dependent material properties: Updated Concrete Compressive Strength can be defined as per AS 5100.5 2017.
- Properties > Time Dependent Material > Comp. Strength

12. Implementation of Steel Girder Design as per IRC 24 -2010

- Design steel sections using IRC 24 -2010. Data base sections Angle, Channel, I, H, Box and Steel plate design are supported.
- Structural steel materials as per IS 2062 -2011.
- Graphic report and Detailed Text report for Bending Resistance, Shear Resistance, Lateral Torsional Buckling and Combined forced could be generated.
- Design > Steel Design > IRC 24 -2010 MIDAS/Civil - Design & checking system for Windows **Design Information** Steel Member Applicable Code Checking Based On AASHTO-LRFD12, AASHTO-LRFD02, AASHTO-LFD96, IRC:24-2010 Design Code Partial Safety Factors × AASHTO-ASD96, AISC-LRFD2K, AISC-LRFD93, kN.m Unit System AISC-ASD89, Eurocode3-2:05, BS5950-90, JTJ025-86, IS:800-2007, IS:800-1984, Member No : 1 Design Code : IRC:24-2010 Update By Code KSCE-ASD96, KSCE-ASD05, TWN-BRG-LSD90, E250 (No:1) 35 Material TWN-BRG-ASD90, IRC:24-2010 (Fy = 240000, Es = 205000000) Partial Safety Factors Plastic (No:1) Section Name : 1.1 Yield Stress and Buckling (Gamma m0) (Rolled : Plastic) 0.27 : 1.25 Ultimate Stress (Gamma m1) (c) SINCE 1989 Member Length : 2.00000 ------MIDAS Information Technology Co., Ltd. (MIDAS IT) MIDAS IT Design Development Team Member Forces OK Close Deoth 0.70000 Top F Width 0,27000 Fxx = 0.00000 (LCB: 1, POS:J) Axial Force HomePage : www.MidasUser.com Bot F Witten 0.27000 Bending Moments My = 41.5692, Mz = 0.00000 Area 0.02000 MIDAS/Civil Version 8.7.0 End Moments Myi = 0.00000, Myj = 41.5692 (for Le) Cyb 0.28063 0.00177 DAY 1 Myi = 0.00000, Myj = 41.5692 (for Ly) Yiber 0.13500 Zyy 0.00505 Mzi = 0.00000, Mzj = 0.00000 (for Lz) ry 0.29726 DEFINITION OF LOAD COMBINATIONS WITH SCALING UP FACTORS. Shear Forces Fyy = 0.00000 (LCB: 1, POS: 1/2) Loadcase Name (Factor) + Loadcase Name (Factor) + Loadcase Na Fzz = -23.094 (LCB: 1, POS:I) LCB C _____ 1 1 Dead Load(1.500) **Design Parameters** _____ Effective Length for LTB Le = 2.00000 Effective Length Factors Ky = 1.00, Kz = 1.00 S/Civil - Steel Code Checking [IRC:24-2010] Equivalent Uniform Moment Factors / Slenderness Correction Factor Cmy = 1.00, Cmz = 1.00, CmLT = 1.00 **Checking Results** *. PROJECT 1, ELEMENT TYPE = Beam Slenderness Ratio * MEMBER NO SECTION NO = 1, MATERIAL NO = 1. L/r = 31.2 < 400.0 (LCB: 1)..... *. LOADCOMB NO = OK *. UNIT SYSTEM : kN, m Axial Strength *. SECTION PROPERTIES : Designation = Plastic T/Tdg = 0.00/4363.64 = 0.000 < 1.000 ... = I - Section. (Built-up) OK Shape **Steel Design Code Graphic Report Text Report**

Civil 2018 Pre & Post-Processing

1. Revit 2018 interface

- Using Midas Link for Revit Structure, direct data transfer between midas Civil and Revit 2018 is available for Building Information Modeling (BIM) workflow. Midas Link for Revit Structure enables us to directly transfer a Revit model data to midas Civil, and deliver it back to the Revit model file. This feature is provided as an Add-In module in Revit Structure and midas Civil text file (*.mct) is used for the roundtrip.
 - File > Import > midas Civil MCT File
 - File > Export > midas Civil MCT File

	Functions	Revit <> Gen
	Structural Column	\Leftrightarrow
	Beam	\Leftrightarrow
Linear	Brace	\Leftrightarrow
Elements	Curved Beam	>
	Beam System	>
	Truss	>
	Foundation Slab	<>
	Structural Floor	\diamond
Planar	Structural Wall	<>
Elements	Wall Opening & Window	>
	Door	>
	Vertical or Shaft Opening	>
	Offset	>
	Rigid Link	>
	Cross-Section Rotation	>
	End Release	>
Boundary	Isolated Foundation Support	>
	Point Boundary Condition	>
	Line Boundary Condition	>
	Wall Foundation	>
	Area Boundary Condition	>
	Load Nature	>
	Load Case	>
	Load Combination	>
LUdu	Hosted Point Load	>
	Hosted Line Load	>
	Hosted Area Load	>
Other	Material	<>
Parameters	Level	>

Civil 2018 Pre & Post-Processing

2. Reinforcement data interchange between Civil and GSD

- Addition of the function to link rebar input data to Civil column with GSD.
- Improvement of GSD design process (Interaction Curve and Moment Curvature Curve) through convenient reinforcement input function of Civil.
- The process of creating reinforcing bars in Line and Arc Type for track type and arbitrary cross section in GSD can be conveniently placed using Rebar Input function in Civil.

3. Improvement on Steel/Prestressed Composite Bridge Wizard

- Form work load can now also consider S.I.P forms (Stay in place forms). If S.I.P forms is selected, the loading on the girder will be activated after the composite action as well.
- Loading data across the girders can now be distributed equally using 'Equally to All Girder' option.
- Structure > Wizard > Steel/Prestressed Composite Bridge wizards

3. Improvement on Steel/Prestressed Composite Bridge Wizard

Multi-curve was inputted by entering the coordinate data of the steel/prestressed composite girder. New input option is implemented in the case where there is no coordinate data for the curvature of the structure. This is the same multi-curve input method of that of the Grillage Model Wizard.

