

Stability Analysis of Reinforced Earth Retaining Walls - LEM

Slope Module Tutorial

Overview

- Limit Equilibrium Method (LEM) is used to check the stability of the reinforced earth retaining walls. LEM assumes the ground as a unit soil mass within which equilibrium of forces and moments at a specific failure surface is considered. LEM is widely used for stability analysis of cohesive slopes.
- SoilWorks provides LEM by Fellenius, Bishop and Janbu. These methods present some discrepancies depending on the strength parameters and the accuracy in slope geometry.
- SoilWorks can perform LEM analysis
 with construction stages reflecting cutting and embankment.

1

Ground Properties

No	Ground Type	Unit Weight [kN/m ³]	Saturated Unit Weight [kN/m³]	Cohesion [kN/m²]	Internal Friction Angle [deg]
1	Weathered rock	20	21	35	30
2	Soft rock	23	24	150	35
3	Hard Rock	24	25	200	37
4	Backfill	18.5	19.5	14	32
5	Counterweight Fill	18.6	19.6	15	25
6	Concrete Block	20	21	980	40

• Ground and structural properties must be defined within the model of "(LEM)".

• In case the limit earth pressure (pl) and the horizontal ground modulus of elasticity (KsB) are defined as the structural properties, 'Strip(LEM)', analysis results are not affected.

Structural Properties

No	Name /Member Type	Reinforceme nt Spacing [m]	Initial Diffusion Width [m]	Initial Diffusion Angle [deg]	Tensile Force [kN]	Width [m]	Backfill Unit Weight [kN/m3]	Friction Coefficient
1	Geogrid /Strip(LEM)	1	2	15	150	1	19.5	0.3

Points to consider in entering reinforcement property data

- Reinforcement Spacing: in the (transverse) direction of the section thickness
- Initial Diffusion Width: to account for the effective width of stress transfer Generally the width of bearing plate is used. In case of no bearing plate, the diameter of Strip may be specified. Even 0 may be specified.
- Initial Diffusion Angle: to account for the angle of stress distribution by Strip The angle is obtained from tests, or generally 10 to 15 degrees are used.
- Tensile Force: maximum tensile strength of Strip
- Width: width of Strip

(ຄ)

Friction Coefficient: between the backfill and Strip

Reinforcement Type	Spacing	Tensile Force	Width
Grid Type	1m	Tensile Force/m	1m
Mat Type	1m	Tensile Force/m	1m
Strip Type	C.T.C	Tensile Force/m	W (m)

Select the SoilWorks execution icon from the Desktop.

- Project Manager > click Slope.
- 2 Define Initial Parameters: click OK.
- Main Icon > Import > select CAD File.
- Select 'Reinforced Earth Retaining Wall Section.dwg' and click Open.
- The user can change the default units for 'Force', 'Length' & 'Time', 'kN', 'm' & 'sec'.

The user can also directly copy the object from the CAD program screen & paste it into SoilWorks.

4

- From the Main Menu, select Limit
 Equilibrium Method > Ground
 Material Property (command: gm)
- 2 Refer to Step 01. to enter the ground material properties and click Add.
- 3 Click Close.

SoilWorks permits ground material properties used in projects to be compiled in a database. The database is created by editing the gdb file in SoilWorks/Dbase in the Install folder.

ata		2 . General						
D	Name	ID 1	Name Wea	thered rock				
1	Weathered rock	Model Type	Mohr-Coulon	nb (LEM)	•			
2	Soft rock							
	Hard Rock	General Paramet	ers			Additional Parameters		
ļ	Backfill	Modulus of Ela			I ktolin k	Variation in Cohesion	0	kN/m ²
	Counterweight					Anisotropic Function		
	Concrete Block					Nonlinear Function		
		Unit Weight (Yt)	20	kN/m³	No Water Level considered		
		Saturated Unit	, Weight (Ysat)	21	kN/m³	Pore Pressure Coefficient	0	
		Cohesion (c)		35	kN/m²	Nail/Pile(LEM)		
		Internal Friction	n Angle (Φ)	30	[deg]	qs Value for Nail	200	kN/m²
						Limit Soil Pressure (pl)	100	kN/m²
		Draining Condi	101			Horizontal Subgrade Reaction (KsB)	1000	kN/m²
		Skenpton 5 C	efficient			······		
		Hori. Permeabil	ity Coleff. (Kh)		m/sec			
			Property	-				
				I				
		Assign Imperr	neable Layer					
		-)(3	

Limit Equilibrium Method > **Structural Property**

Procedure

From the Main Menu, select Limit
 Equilibrium Method > Structural
 Property (command: sp)

Define Geogrid.

- 2 Refer to Step 01. to enter the structural properties and click Add
- 3 Click Close.

-Data	1	2 General		
ID	Name	ID 11	Name Geogrid	
1	Geogrid	Element Type	Strip/Fabric (LEM)	•
		0		
		Sumness		
		General	-	ï
		Spacing	1	m
		Initial Diffusion Width	2	[]] []]
		Initial Diffusion Angle	15	[ueg]
		Reinforcement Vector	10	
		Reinforcement cad		
		Tensile Force	150	kN
		Consider Pullout Force	Simplif	ied Method 🖣
I		Width	1	m
		No. of Contact		Side2 🔻
		Unit Weight of Backfill	19.5	kN/m ³
		Friction Coefficient	0.3	
<u> </u>		ContactCohesion		
		Contect Enction Angle	36	•

- Prior to creating surfaces for a complex section like reinforced earth retaining walls,
- Select all the curves from **Model Data**.
- Prom the Main Menu, select Geometric Shape > Division at Intersection.
- In case the objects constituting the section in the CAD file are improperly composed (ie, overlapped curves, minute offsets, etc.), errors may occur in the process of auto-generating the surfaces. Accordingly, intersections are divided in advance.

Geometric Shape > Auto-generate Surfaces

Assign Material Properties

- From the Main Menu, select Limit Equilibrium Method > Water Level.
- Prom the Model Data, select the curves by which the water level will be defined (water level is set to the rainy season)
- Click OK.

Saturated Unit Weight (γsat) of Ground Material Properties is used for the ground below the water level, and Wet Unit Weight (γt) is used for the ground above the water level.

1	Define Water Lev	el	x
	Function Name	Water Level	
	(Select Curve(s) (17)	
		3 OK Cancel	

- From the Main Menu, select Limit Equilibrium Method > Arc Failure Surface.
- 2 Boundary Set: enter 'Arc failure surface'.
- Olick Draw Grid Range and draw the range of grid on Model Data (in the order of P1→P2→P3)
- 4 Select Method of using Arc Tangent Lines.
- 5 Click Draw Arc Tangent and draw the range of tangent lines on Model Data.

(in the order of P1 \rightarrow P2 \rightarrow P3)

Number of Arc : enter '6'.

7 Click **OK**.

- From the Main Menu, select Limit Equilibrium Method > Circular Failure Surface.
- Boundary Set: enter 'Passing point boundary'.
- Click Drawing Grid Range and draw the range of grid on Model Data (in the order of P1→P2→P3)
- 4 Select Method of using Arc Radius Length.
- Select Method of Searching First
 Arc Radius & Define Passing
 Point, and enter '52.7846, 28.7628'
 in Passing Point. (or, click the
 Passing Point entry field and click
 the passing point on Model.)
- **6** Number of Arc : enter '10'.
- Click OK.

Analysis/Design > **Analysis Case**

Procedure

- From the Main Menu, select
 Analysis/Design > Analysis Case.
- 2 Click Add.
- Name: enter '2nd Tier Reinforced Earth-Rainy Season', and select Analysis Method: Slope Stability (LEM) Analysis.
- Olick Use all Layer Sets &
- 5 Click Analysis Control Data.
- Slope Direction: select 'Left to Right'.
- 7 Check on Initial Water Level and select 'Water Level'.
- 8 Click OK.
- Drag & Drop 'Arc failure surface' into Data used in Analysis
- 10 Click **OK**.

Analysis methods are 'Bishop', 'Fellenius' and 'Janbu'.

Analysis/Design > **Design Option**

Procedure	1 Design Options X
1 From the Main Menu, select	Slope
Analysis/Design > Design Option.	Factor of Safety for Slope
2 Select Embankment Slope.	Embankment Slope 3 1.300
3 Enter ' 1.3 '	Cut Slope (Dry) 1.500
4 Click OK .	Cut Slope (Wet) 1.200
	4
	OK Cancel

Analysis/Design > **Analysis**

- From the Main Menu, select
 Analysis/Design > Analysis &
 Report.
- 2 Click Perform Analysis.

		Name	Analysis Type
2	?	2nd reinforced earth retaining walls-rainy season	Limit Equilibrium Method (LEM)
2	?	Slope Analysis Results Report	Report

Results > **Result Analysis**

- From the Result WorksTree, check
 'Safety Factor' of Slope Stability
 Analysis.
- 2 Results > Result File produces the results in a text file (*.txt).
- Property Window: select 'Legend', 'Limit Equilibrium Method' & 'Limit Equilibrium Method Contour', and maneuver the detail items.
- Upon double-clicking a specific slice of the arc, detail data of the slice (Free Body Diagram) can be checked.
- The result data background color [Command: BK] can be changed from Main menu > Window > View Setting: Background Display.

Result Analysis & Re-Analysis

- Upon execution of Pre Mode/Post
 Mode analysis, Post Mode
 automatically becomes active when
 results are produced.
- If re-analysis is sought, any change in data such as the arc grid or arc tangents need to be revised after switching to the **Pre Mode**.
- 3 Select Filter > Grid for Arc Failure Surface to move or revise the Failure Arc Center Grid.
- Once the model has been revised, repeat the STEP 12 for re-analysis.

- 1 Select Design & Report Workstree
- 2 Double click 'Slope Analysis Check' to check the report Word file, which is created in the folder of the model file.
- The contents of the Slope Report consist of 1. Slope Stability Analysis, 2. Applied Material Properties and 3. Safety Factor Results.
- Evaluation against the safety factor reference defined in Design Option is reported in terms of OK (acceptable) /NG (unacceptable).
- When generating the report, the file path, file folder and file name must not include ' [,], ^, & '.

Initial diffusion width and angle of reinforcement

When LEM is used to analyze slope stability in practice, it is not straightforward to account for the stiffness of the reinforcement. The safety factors are sensitive to the values of the diffusion width and the diffusion angle, the effects of which are often overlooked.

When reinforcement is inserted in a slope for LEM analysis, a certain increase in strength of a slice within the diffusion range needs to be reflected. The diffusion range is determined first by the diffusion width perpendicular to the reinforcement and the spread of the width by the diffusion angle, in contact with the failure arc as shown in hatch below. It is recommended that the initial diffusion width be 1.0m or 2.0m corresponding to the size of anchor plates, and the initial diffusion angle be 10 to 20 degrees.

