midas **Civil**

鋼箱型橋梁反應譜分析

台灣邁達斯技術部製作 www.midasuser.com.tw

MIDAS Information Technology Co., Ltd.

目

錄

概要	1
設定操作環境及定義材料和斷面	2
定義材料	2
定義斷面	3
建立結構模型	4
主梁及橫梁模型	4
輸入橫梁	5
輸入橋墩	5
剛性連接	7
建立橋墩和橫梁	9
輸入邊界條件	10
輸入支承的邊界條件	
剛性連接	11
輸入橫梁的梁端剛域	
輸入橋臺的邊界條件	13
輸入二期載重	14
輸入質量	15
輸入反應譜資料	17
輸入反應譜函數	
輸入反應譜載重狀況	
運行結構分析	19
查看结果	20
載重組合	
查看振態形狀和頻率	21
查看橋墩的支承反力	24

概要

本例題介紹使用midas Civil的動態反應譜分析功能來進行耐震設計的方法。

例題使用的是簡化的鋼箱型橋梁模型,橋梁結構係由主梁、橫梁和橋 墩構成。橋臺部分由於勁度很大,不另外建立模型而僅輸入邊界條件來模 擬;基礎部分假設完全固定,也只依邊界條件來定義。

以下是鋼橋梁的一些基本資料。

跨	徑:45 m + 50 m + 45 m = 140 m
橋	寬:11.4 m
主梁刑	ジ式:鋼構箱型 梁
鋼	材:CNS(S) SM490(主梁)
混 凝	土:CNS(RC) C280(橋墩)

[單位:mm]

圖1. 橋梁剖面圖

設定操作環境及定義材料和斷面

開啟新檔 (L New Project) ·以'Response.mcb'為檔名儲存(Save)。

File	New Project	
File	Save (Response)	

將單位系統設定為 Tonf, m。

Tools / Unit System	
Length $> \mathbf{m}$;	Force (Mass) > Tonf

定義材料

分別輸入主梁和橋墩的材料資料。

主選單 Properties>Material Properties Add
Material ID (1); Type of Design > Steel
Standard > CNS06(S) ; DB > SM490 \triangle
Material ID (2) ; Type of Design > Concrete
Standard > CNS560(RC) ; DB > C280 OK

₊

aterial ID 1	Name	SM490		Material ID	2	Name	C280	
sticity Data				Elasticity Data				
me of Design	Steel			Type of Design	Concrete	Steel		
	Standard	CNS06(S)	-	rype or besign	leonalete	Standard		v
	DB	SM490	-			DB		Ŧ
	Concrete					Concrete		
	Standard		*	L		Standard	CNS560(RC)	•
Type of Material		Code	w	Type of Material			Code	*
Isotropic C Orthotropic	DB		*	Isotropic	C Orthotropic	DB	C280	-
Steel				Steel				
iodulus of Elasticity : 2.0400e+007	tonf/m^2			Modulus of Elastic	ity: 0.0000e	+000 tonf/m^2		
oisson's Ratio : 0.3				Poisson's Ratio	:	0		
hermal Coefficient : 1.1000e-005	1/[C]			Thermal Coefficien	nt : 0.0000e	+000 1/[C]		
/eight Density : 7.85	tonf/m^3			Weight Density	:	0 tonf/m^3		
Use Mass Density: 0.8005	tonf/m^3/q			🗖 Use Mass Den	sity:	0 tonf/m^3/q		
Concrete				Concrete				
odulus of Elasticity : 0.0000e+000	tonf/m^2			Modulus of Elastic	ity : 2.4923e	+006 tonf/m^2		
oisson's Ratio :	Ī			Poisson's Ratio	: 0	. 167		
hermal Coefficient : 0.0000e+000	1/[C]			Thermal Coefficien	nt : 1.1000e	-005 1/[C]		
/eight Density :	tonf/m^3			Weight Density		2.4 tonf/m^3		
Use Mass Density:	tonf/m^3/q			Use Mass Den	sity: 0.	2447 tonf/m^3/q		
esticity Data				-Plasticity Data				
Plastic Material Name NONE	•			Plastic Material I	Name NONE	•		
ermal Transfer				Thermal Transfer				
ecific Heat : 0	cal/tonf*[C]			Specific Heat	: 0	cal/tonf*[C]		
eat Conduction : 0	cal/m*hr*[C]			Heat Conduction	. 0	cal/m*hr*[C]		
	-			L	1			

圖2. 定義材料

定義斷面

使用 User 自行輸入主梁、橫梁以及橋墩的斷面資料。 梁: 主 箱型梁 2000×2500×12×16/18 橫 梁: I 型鋼 1500×300×12×12/12 柱 帽: 長方形斷面 1500×1500 墩: 圓形斷面 橋 1500 Add 主選單 Properties> I Section Properties DB/User 表單 Section ID (1); Name (Girder); 斷面形狀 > Box ; User (開) 輸入:H(2); B(2.5); tw(0.012) tf1 (0.016) ; C (2.3) ; tf2 (0.018) Apply Section ID(2);Name (Cross);斷面形狀 > I-Section;User (開) 輸入:H(1.5);B(0.3);tw(0.012);tf1(0.012)。 Apply Section ID (3); Name (Coping); 斷面形狀 > Solid Rectangle ; User (開), 輸入: H (1.5); B (1.5) ________ Apply_______ Section ID (4); Name (Column); 斷面形狀 > Solid Round; User (開) , 輸入: D (1.5) OK

圖3. 定義斷面

♀ 輸入斷面尺寸 時,若只輸入tf1, 不輸入tf2,則 tf2 與 tf1相同。

3

建立結構模型

主梁及橫梁模型

使用 Z Create Nodes 建立節點後 · 透過 🛄 Extrude Element 功 能將節點依 28@5m 擴展成梁單元來建立主梁。

View Structure Node/Element	Properties Boundary L	Civil 2013 - [E:\02_M bad Analysis Results	1IDAS_Works\00_Crvil201 s PSC_ Pushover 1	3_Manuals\04_Basic\BoxSti Design Query Tools	eel_Response *] - [Mod	el View]	_ 曰 × 챯 Heb ~ _ 라 ×
Create Nodes	ele Mirror → Scale t *** Scale *** Nodes Table	Create Elements	ate Extrude Divide Me	rge Intersect Elements	Auto-mesh	Change Parameters	
	1144® ¥	- 4	- 12 12		6 .	7 A A	22
Tree Menu 🛛 🐺 🛪	11.	THE OF M					
Node Element Boundary Mass Load	LII Base	• 1111					
Extrude Elements • Extrude Elements • Batent Number 99 Node Number 57 Extrude Type • Node Number 57 Node Number • Extrude Type • Bement Number • Betrail 1 1 1:0:4900 Section : • Beta Andie : • V (Ded)							8 □ > 8 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
Generation Type Translate C Rotate C Project Translation G Equal Distance C Unequal Distance	Model View/						000000000000000000000000000000000000000
dx,dy,dz: 5,0,0 m Number of Times : 28 -	Message Window						4 × 4 4 × 4 4 × 4 4 × 4
Tree Menu Task Pane	Command M	essage / Analysis Messi	age /				•
For Help, press F1		Node-35	U: 85, 0, 0	G: 85, 0, 0	tonf 💌 m	▼ ☆ ☆ ▶ none ▼	2 0 1 / 2 1

圖4. 輸入主梁

Apply

輸入橫梁

在主梁起點處使用 // Create Elements 功能連接兩個節點建立一個橫梁後,可透過將該梁依橋梁縱向複製來建立其餘的橫梁。

Node Number (開)
主選單 Node/Element>Elements> └ Create Elements... Element Type > General beam/Tapered beam Material > 1:SM490 ; Section > 2:Cross ; Beta Angle (0)

Nodal Connectivity (1, 2)[®]

View Structure Node/Element View Structure Node/Element Create Translate Divide Merge Orgett	Properties Boundary Loo • Mirror * • • • • • • • • • • • • • • • • • •	Civil 2013 - [E\02_MIDAS_ d Analysis Results PS Create ements Translate E	Works\00_Crvil2013_Manuals\04. iC Pushover Design Quen i	Basic\BoxSteel_Response *] - (N y Tools → Rotate Auto-me Rotate Map-mes / \ Mrror A	Iodel View) sh Change Parameters Table	_ 급 × 帝 Help Y _ 공 X
Nodes		<u> </u>	Elemen	nts		
□ ``E ``E ``E `E `E `E	10 4 4 8 1 1	- 1	「図図コマ雄」	2 □ 4 6		
ree Menu 🛛 🔍 🛪 🗙	Ht Base	- 1 3		\smile		S1 12 12
Boot Exclusion Bootnau/ Mails Cody Translate Benents Image: Cody Image: Cod		8 10 12 14 16 1 7 p 11 p3 p5 p	8 20 22 24 26 28 7 99 21 23 25 27	20 32 34 36 38 40 29 31 53 55 57 39	42 44 46 48 50 52 <u>1</u> 43 45 47 49 51	
Thickness Inc. : 0 T Rep.	4 Model View					0*
T Delete Free Nodes	Message Window					₽
Intersect Node Elem	The second se					4
Copy Node Attributes						4
Copy Element Attributes						
Tree Menu Task Pane	A A A A A A A A A A A A A A A A A A A	ssage / Analysis Message /			11	•
or Help, press F1		Node-41 U: 1	00, 0, 0 G: 100, 0	0, 0 tonf 💌 m	▼ ☆ ☆ ▶ none ▼ ?	0 - 1 2 - 2

圖5. 輸入橫梁

輸入橋墩

如圖6所示·在橋墩的位置建立模型後·透過剛性連接(Rigid Link)來 模擬實際結構。橋墩的剖面如圖7所示。

圖7. 橋墩模型

剛性連接

選擇主梁支承處的節點·將其往 z 軸方向複製·產生要進行剛性連接的節點。(參考圖6)

▲ Element Number (開); ▲ Node Number (關)
 ▲ Select by Window (單元:選擇如圖8的單元19~38)
 ▲ Activate
 ▲ Element Number (關)
 ④ Iso View ; ▲ Node Number (開)
 主選單 Node/Element>Nodes> ᡨ Translate...
 ▲ Select Single (節點 : 19, 20, 39, 40)
 Mod > Copy ; Translation > Unequal distance
 Axis > z ; Distance (-1.25, -0.2, -0.75)

圖8. 複製節點

在要建立橋墩和橫梁的位置產生節點。

- 主選單 Node/Element>Nodes> 於 Divide ... 建立橋墩柱的位置節點 Divide > Equal Distance (開); Number of Divisions (2) Nodes to Divide (67, 68)^⑦; (69, 70)^⑦ → 自動建立節點 71, 72
 主選單 Node/Element>Nodes> [□] Translate...產生柱帽節點
 - Select Single (節點: 71, 72)
 Mode > Copy ; Translation > Unequal distance
 Axis > y ; Distance (11.7/2, -11.7)
 ▲ 建立節點 73, 74, 75, 76

Select Previous

Axis > z ; Distance (-0.75, 7@-1) ______ → 建立墩柱節點 77~92

圖9. 輸入橋墩的節點

建立橋墩和橫梁

使用 📝 Create Elements 功能建立橋墩和橫梁。(參考圖7)

主選單 Node/Element>Elements> 📝 Create Elements
Element Type > General beam/Tapered beam
Material > 2:C280 ; Section > 3:Coping
Beta Angle (0); Intersect > Node (開) (圖10的①)
Nodal Connectivity (73,75) ⁰ 建立第一個橫梁
Nodal Connectivity (74,76) ⁰ 建立第二個橫梁
Material > 2:C280 ; Section > 4:Column
Beta Angle (0); Intersect > Node (開)
Nodal Connectivity (77,91) ⁰ 建立第一個墩柱
Nodal Connectivity (78,92) ⁰ 建立第一個墩柱

圖10. 建立橫梁和橋墩

輸入邊界條件

輸入支承的邊界條件

17

主梁與橋墩連接的支承部分使用彈性連接(Elastic Link)來模擬。使用 🝳 Zoom Window 放大橫梁的連接部分,並使用 彈性連接 功能輸入支 承的邊界條件。

Zoo	m Wir	ndow (於	大	第一個	目橋墩	的机	黃泽	(部分)		
主選單	Boun	ndary> E	Elas	tic Lii	nk					
	Optio	ns > Ac	ld/F	Replac	е;	Li	nk	Туре	> General	Туре
	SDx	(1e11)	;	SDy	(1e1	1)	;	SDz	(1e11)	
	SRx	(0)	;	SRy	(0)		;	SRz	(0)	
	2 No	des (59	, 6	3)						
	SDx	(1e11)	;	SDy	(0)	;	SE	Dz (1	e11)	
	SRx	(0)	;	SRy	(0)	;	SR	z (0))	
	2 No	des (60), 64	4) [™]						
🖸 Fi	t, 🔍	Zoom	Win	dow (放大鉤	₽_	二個	橋墩的	的橫梁部分)
	SDx	(1e11)	;	SDy	(1e1	1)	;	SDz	(0)	
	SRx	(0)	;	SRy	(0)		;	SRz	(0)	
	2 No	des (61	, 6	5)						
	SDx	(1e11)	;	SDy	(0)	;	SE	Dz (0)	
	SRx	(0)	;	SRy	(0)	;	SR	z (0))	
	2 No	des (62	, 6	6) 🖑						

圖11. 彈性連接部分的單元

♀ Elastic Link各 方向彈簧的勁度需 按單元座標系輸 入。自由方向輸入 為 "0",固定方向 輸入為 "1e11"以 確保其剛性運動。

剛性連接

將在實際位置建立的主梁和支承、支承和橋墩分別使用 **剛性連接** 連接起來。(參考圖6)

	🖸 Fit, 🦉 Zoom Window (放大第一個橋墩的橫梁部分)
	主選單 Boundary> Rigid Link
	🕅 Select Single (節點: 60)
	Master Node Number (20)
	Typical Types > Rigid Body
連	Copy Rigid Link (開); Axis > x ; Distance (50) \circ Apply
	🏋 Select Single (節點 : 59)
	Master Node Number (19) \mathcal{I} Apply
	Select Single (節點: 68)
	Master Node Number (64) ^{3th}
	Select Single (節點: 67)
	Master Node Number (63) ³ th Apply
	I Select Single (節點: 77)
	Master Node Number (71) ^C Apply

圖12. 主梁和支承及橋墩間的剛性連接

♀ 已輸入的剛性連
 接可進行複製。

輸入橫梁的梁端剛域

由於建模時所有的構件單元是以中心軸為基準相互連接的·故會有如 圖13所示的主梁和橫梁間由於主梁的梁寬導致的重複部分出現。對此可使 用 Beam End Offset 功能透過輸入剛域長度使程式在計算勁度時將該部 分的影響排除。

輸入梁端剛域長度的方法有整體座標系(Global)和單元座標系(Element) 兩種類型。若選擇整體座標系類型,則對於所輸入的剛域長度不考慮載重, 只針對扣除剛域後的單元長度計算勁度和自重。

若選擇單元座標系的話,只在計算勁度時排除輸入的剛域長度,而在 計算自重和施加載重時則將該部分包含在內。(參考 On-Line Help)

在此使用**單元座標系**來輸入剛域長度。此時由於需在梁單元的 i、j 端輸入軸向的剛域長度,故需事先確認梁單元的單元座標系方向。

▶ Activate All ↓ Left View ; 🔂 Hidden (開)

圖13. 輸入橫梁的剛域長度

輸入橋臺的邊界條件

G

本例題主梁與橋墩橫梁的支承部分使用 *Elastic Link* 和 *Rigid Link* 功能來模擬。橋臺的邊界條件如圖14所示。基礎則假設其完全固定,故束 制各方向的自由度。

圖15. 輸入邊界條件

輸入二期載重

首先定義二期載重的靜力載重狀況。

圖16. 輸入靜力載重狀況

假設二期載重為 1 tonf/m大小均佈載重,用Element Beam Loads輸入。

```
Left View
Load>Beam Load>Element ...
Select Window (單元:主梁 · 圖17的①)
Load Case Name > DL ; Options > Add
Load Type > Uniform Loads
Direction > Global Z ; Projection > No
Value > Relative ; x1 (0) ; x2 (1) ; w (-1)
```


圖17. 輸入主梁二期載重

輸入質量

由於在進行反應譜分析之前需先進行特徵值分析,故在此需輸入進行 特徵值分析所需的結構的質量。

在midas Civil中輸入質量有兩種類型。一是將所建結構模型的自重轉 換為質量,另一種是將輸入的其他靜載重(鋪裝及護欄載重等)轉換為質 量。

對於結構的自重轉質量不需另行輸入,即可在 Structure>Structure T ype 對話視窗中完成轉換。而二期載重一般是以外部載重(梁單元載重、 樓板載重、壓力載重、節點載重等)的形式輸入的,可使用Load>Structure Loads/Masses>Masses>Loads to Masses 功能來轉換。

本例題也使用上述兩種方法來輸入質量。

首先將所輸入的二期載重(梁單元載重)轉換為質量。

主選單 Load>Structure Loads/Masses>Masses>Loads to Masses...

Mass Direction > X, Y, Z Load Type for Converting > Beam Load (開) Gravity (9.806) ; Load Case > DL Scale Factor (1)

Mass Directi	00	
Сх	СY	CΖ
С Х, Ү	CY,Z	C x, z
€ X, Y, Z		
Load Type f	or Convertin	g
T Nodal Lo	ad	
🔽 Beam Lo	ad	
Floor Lo	ad	
Pressure	e (Hydrostati	ic)
Gravity	9,806	m/sec^2
Load Case /	Factor	
Load Case / .oad Case : Scale Factor	Factor DL : 1	<u> </u>
Load Case / .oad Case : Scale Factor LoadCase	Factor DL : 1 Scale	
Load Case / .oad Case : Scale Factor LoadCase DL	Factor DL : 1 Scale 1	.
Load Case / .oad Case : Scale Factor LoadCase DL	Factor DL : 1 Scale 1	Add Modify
Load Case / Load Case : Scale Factor LoadCase DL	Factor DL : 1 Scale 1	Add Modify
Load Case / Load Case : Scale Factor LoadCase DL	Factor DL : 1 Scale 1	Add Modify Delete
Load Case / .oad Case : Scale Factor LoadCase DL	Factor DL : 1 Scale 1	Add Modify Delete
Load Case / .oad Case : Scale Factor LoadCase DL Remov	Factor DL : 1 : Scale 1	Add Modify Delete

圖18. 將梁單元載重轉換為質量

以下將單元的自重轉換為質量。

Model / Structure Type... Convert Self-weight into Masses > Convert to X, Y, Z ↓

or occure i ype			
	ne C Y-Z Plane	C X-Y Plane	C Constraint RZ
Mass Control Paramete	r		
Lumped Mass			
Consider Of	f-diagonal Masses		
	Potational Rigid Body M	do for Model Darticion	tion Factor
	NUMBER OF TAXABLE PARTY IN	טב וטן פטעמן במ ענוטמ	
C Consistent Man	Rotadonal Rigid body in	ide for Modal Paradipa	don'n detor
C Consistent Mass	Rotationial regio body in		0011 0001
Consistent Mass	t into Masses	ue loi Modal Participa	
Consistent Mass	t into Masses	rt to X, Y (~ Convert to Z
C Consistent Mass	t into Masses , Y, Z C Conve	rt to X, Y (° Convert to Z
Consistent Mass	t into Masses , Y, Z C Conve	rt to X, Y (" Convert to Z
Consistent Mass	t into Masses , Y, Z C Conve 9.806 m	rt to X, Y (° Convert to Z
Consistent Mass	t into Masses , Y, Z 9.806 0 7 7	rt to X, Y (/sec^2 1	" Convert to Z
Consistent Mass	1 Into Masses Conve 9.806 m m 0 f f ction with Center Line () f f	rt to X, Y (/sec^2] -Y Plane) for Display	" Convert to Z

圖19. 將结構的自重自動轉換為質量

質量輸入結束後,可使用 Query>Mass Summary Table 功能確認質 量輸入是否正確。表格中 Load to Masses 是指由外部載重所轉換的質量, Structure Masses 是指由自重所轉換的質量。在表格下端的 Sum (圖20 的①)表單裏的數值為被轉換後的所有質量的合計。

Query>Mass Summary Table...

Node	Nodal Mass (tonf/g)	Load To Masses (tonf/g)	Structure Mass (tonf/g)	Sum (tonf/g)
69	0.0000	0.0000	1.6107	1.6107
70	0.0000	0.0000	1.6107	1.6107
71	0.0000	0.0000	2.1201	2.1201
72	0.0000	0.0000	2.1201	2.1201
73	0.0000	0.0000	0.5507	0.5507
74	0.0000	0.0000	0.5507	0.5507
75	0.0000	0.0000	0.5507	0.5507
76	0.0000	0.0000	0.5507	0.5507
77	0.0000	0.0000	0.2163	0.2163
78	0.0000	0.0000	0.2163	0.2163
79	0.0000	0.0000	0.4325	0.4325
80	0.0000	0.0000	0.4325	0.4325
81	0.0000	0.0000	0.4325	0.4325
82	0.0000	0.0000	0.4325	0.4325
83	0.0000	0.0000	0.4325	0.4325
84	0.0000	0.0000	0.4325	0.4325
85	0.0000	0.0000	0.4325	0.4325
86	0.0000	0.0000	0.4325	0.4325
87	0.0000	0.0000	0.4325	0.4325
88	0.0000	0.0000	0.4325	0.4325
89	0.0000	0.0000	0.4325	0.4325
90	0.0000	0.0000	0.4325	0.4325
91	0.0000	0.0000	0.2163	0.2163
92	0.0000	0.0000	0.2100	0.2163
Total	0.0000	28.5539	53.0231	81.5771

圖20. 質量統計表格

輸入反應譜資料

輸入反應譜函數

在此使用振態反應譜法進行耐震計算。輸入地震力載重所需的各項參 數如下。

震區:	南投草屯·近車籠埔斷層
	$S_S^D = 0.8, S_1^D = 0.45, S_S^M = 1.0, S_1^M = 0.55$
地盤分類:	第一類地盤 · Na=1.0, Nv=1.0
重要因子:	I = 1.2
起始降伏地震力放大倍數:	$\alpha y = 1.65$
結構系統韌性容量:	3.0
如	
如圖21·將以上參數輸入後即了	可自動得到依公路橋梁耐震設計規範

[TaiwanBrg(98)] 的地震影響係數曲線。

	Load>Seismic>Response Spectrum Data> RS FunctionsAdd
Design Spectrum	Design Spectrum>TaiwanBrg(98)
	Spectrum Type>Horizontal Design Spectrum
	Seismic Zone > Near Fault Zone , Spectrum Used >Design Spectrum
	Spectral Response Acceleration > Design (Ss) = 0.8, (S1) = 0.45
	Near Source Factor > Design (Na) = 1.0 , (Nv) = 1.0
	Soil Type > Type 1, Importance Factor > 1.2
	Seismic Magnify Factor > 1.65 , Response Modification Coef. > 3.0
<u>\</u> डे	Max. Period (6) 🚱 🚽

♀ 反應譜函數中輸入 的最大週期必須包含 特徵值分析所計算出 的最大、最小週期的 範圍。

輸入反應譜載重狀況

輸入反應譜函數後,依橋梁縱向(整體座標系X方向)和橫向(整體座標 系Y方向)分別定義反應譜載重狀況。

Operations > Add

圖22. 輸入反應譜載重狀況

 ♀ 地震載重的方向與X-Y平面平行・則選擇・X-Y'方向。
 ♀ 地震角度是指地震載 重的方向與整體座標系X

軸的夾角,角度的符號 以 Z 軸為準依循右手定 則定義。

 ✔ 若選擇Add signs(+,-) to the Results · 則在對 各振態的結果進行組合 時會考慮正負號 · 並需 選擇符號的考慮方式 · -詳見On-Line Help · ♀ 如果分析後振態參與 質量達不到規範所規定 的90%,則需適當增加 頻率數量重新進行分 析。

ype of Analysis				
Eigen Vectors		C Ritz Vectors		
C Subspace Iteration				
Lanczos				
Eigen Vectors				
Number of Frequencies : 25	÷	Sturm Sequence Check		
- Frequency range of interest				
Search From : 0	[cps]			
To : 1600	[cps]			

圖23. Eigenvalue Analysis Control 對話視窗

運行結構分析

建立模型並輸入所有參數後,即可運行結構分析。

Analysis > 🖹 Perform Analysis

查看結果

載重組合

結構分析完成後,對於分析結果進行線性組合。

對於橋梁縱向和橫向分別按以下方法進行載重組合·來查看支承的水 平方向反力。

▶載重組合1 (LCB1)	: $1.0 RX + 0.3 RY$
▶載重組合2 (LCB2)	: $0.3 RX + 1.0 RY$

Results> Load Combinations...

 Active (開) ; Name > (LCB1) ; Type > Add

 Load Cases > RX(RS) ; Factor (1)

 Load Cases > RY(RS) ; Factor (0.3)

 Active (開) ; Name > (LCB2) ; Type > Add

 Load Cases > RX(RS) ; Factor (0.3)

 Load Cases > RY(RS) ; Factor (1)

				T				1 10	E. C. Start
1	NO	Name	Active	Type	Description	<u> </u>		LoadCase	Factor
4	1	LCB1	Activ	Add	1.0RX+0.3RY			RA(RS)	1.0000
~	2	LUB2	ACTIV	Add	U.3KA+1.0RY		-	RT(RS)	0.5000

圖24. Load Combinations 對話視窗

查看振態形狀和頻率

各振態的質量參與係數可透過 Results > Result Tables > Vibration Mode Shape 來查看。

Results>Result Tables>Vibration Mode Shape...

Records Activation Dialog > Eigenvalue Mode > Mode 1 (開) ↓

♀ 在Record Activation 對話視窗中不選擇右側 的特徵值模態並點擊 Cancel的話,則只顯 示振態參與質量,不顯 示特徵值向量。

♀ 圖26的表格中 · ①、 ②分別為X、Y方向上相 應模態的振態參與質 量 · 合計(③)欄中的數 值為到該模態為止振態 參與質量的累計。

圖25. 各振態的質量參與比率

	Node	Mode	UX	UY	UZ	RX	RY	RZ
			,		EIGEN VECTOR (to	onf,m)		
	1	1	0.120203	0.000000	0.000000	0.000000	-0.000466	0.000000
	2	1	0.120203	0.000000	0.000000	0.000000	-0.000466	0.000000
	3	1	0.120198	0.000001	0.002338	0.000000	-0.000446	0.000000
	4	1	0.120198	0.000001	0.002338	0.000000	-0.000446	0.000000
	5	1	0.120182	0.000001	0.004477	0.000000	-0.000387	0.000000
	6	1	0.120182	0.000001	0.004479	0.000000	-0.000388	0.000000
	7	1	0.120156	0.000002	0.006229	0.000000	-0.000292	0.000000
	8	1	0.120156	0.000002	0.006231	0.000000	-0.000292	0.000000
	9	1	0.120119	0.000002	0.007413	0.000000	-0.000163	-0.000000
	10	1	0.120119	0.000002	0.007416	0.000000	-0.000163	-0.000000
	11	1	0.120072	0.000001	0.007871	0.000000	-0.000004	-0.000000
	12	1	0.120072	0.000001	0.007875	0.000000	-0.000004	-0.000000
	13	1	0.120015	0.000001	0.007465	0.000001	0.000180	-0.000000
	14	1	0.120015	0.000001	0.007469	0.000001	0.000180	-0.000000
	15	1	0.119947	-0.000000	0.006077	0.000001	0.000386	-0.000000
	16	1	0.119947	-0.000000	0.006082	0.000001	0.000386	-0.000000
	17	1	0.119869	-0.000002	0.003616	0.000001	0.000608	-0.000000
	18	1	0.119869	-0.000002	0.003622	0.000001	0.000608	-0.000000
	19	1	0.119781	-0.000004	0.000004	0.000001	0.000845	-0.000001
	20	1	0.119781	-0.000004	0.000010	0.000001	0.000845	-0.000001
	21	1	0.119974	-0.000007	-0.003600	0.000001	0.000607	-0.000001
	22	1	0.119974	-0.000007	-0.003593	0.000001	0.000607	-0.000001
	23	1	0.120157	-0.000010	-0.006057	0.000001	0.000388	-0.000001
	24	1	0.120157	-0.000010	-0.006051	0.000001	0.000387	-0.000001
	25	1	0.120330	-0.000014	-0.007465	0.000001	0.000189	-0.000001
	26	1	0.120330	-0.000014	-0.007459	0.000001	0.000189	-0.000001
	27	1	0.120492	-0.000017	-0.007935	0.000001	0.000015	-0.000001
4 1	Eiger	value	Mode (Participati	on Vector Mode	0.007030	• • • • • • • • • • • • • • • • • • • •	0.000045	0.000004
4	Indel Vie	Roc	ult-Figenvalue Mod	a1/	L L		L. U.	
1	TOUCI VIE	Res	ure Leigenvalue Mou					

圖26. 第一模態各節點的特徵值向量

橋梁縱向(X方向)的振態參與質量中Mode 1的參與比率(圖26的①)比 其他方向大得多,因此可以將其看作為此縱向(X向)的主振態。同樣Mode 2可被看作是橋梁橫向(Y向)的主振態。

結構各模態的頻率與週期如圖27所示。

			ELC.		LVSIS	
	Mode	Frequer	icv	Period		
	No	(rad/sec)	(cvcle/sec)	(sec)	Tolerance	
	1	6.452551	1.026955	0.973752	0.0000e+000	
	2	9.139728	1.454633	0.687459	0.0000e+000	
	3	12.905216	2.053929	0.486872	0.0000e+000	
	4	13.301777	2.117044	0.472357	0.0000e+000	
	5	14.409398	2.293327	0.436048	0.0000e+000	
	6	14.536748	2.313595	0.432228	0.0000e+000	
	7	17.779054	2.829624	0.353404	0.0000e+000	
	8	21.830995	3.474511	0.287810	0.0000e+000	
	9	22.477434	3.577395	0.279533	0.0000e+000	
	10	24.193435	3.850505	0.259706	0.0000e+000	
	11	28.847573	4.591234	0.217806	0.0000e+000	
	12	28.920682	4.602869	0.217256	0.0000e+000	
	13	37.410676	5.954094	0.167952	0.0000e+000	
	14	37.905446	6.032839	0.165759	0.0000e+000	
	15	41.353849	6.581669	0.151937	0.0000e+000	
	16	49.257838	7.839628	0.127557	1.0464e-230	
	17	54.566034	8.684454	0.115148	5.0170e-217	
	18	57.476344	9.147644	0.109318	4.4577e-208	
	19	57.946433	9.222461	0.108431	6.8193e-208	
	20	59.325378	9.441927	0.105911	1.6554e-206	
	21	67.270328	10.706405	0.093402	1.2517e-191	
	22	70.989086	11.298264	0.088509	9.0233e-185	
	23	75.816001	12.066491	0.082874	1.0356e-175	
	24	77.001041	12.255096	0.081599	1.1435e-173	
	25	80.667081	12.838565	0.077890	5.8128e-168	
Eigen	value M	de A Participation	Vector Mode	DADTIONATION HACOT		

圖27. 各模態的頻率與週期

透過表格確認各方向的主振態後,即可在模型視窗查看其具體形狀表 現,即振態形狀。 🖻 Тор Results > Vibration Mode Shape... Components > Md-XYZ ; Type of Display > Undeformed (開) 只選擇一個模態的話, 則只顯示該模態的振型 Multi-Modes 形狀。 Mode Numbers > Mode 1, Mode 2 ; Tile Horizontal (開) ↓ Choose Modes X Mode Numbers Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10 Tile Horizontally C Tile Vertically
 Ar Influ. Lines*
 N.T.H. Results*
 ₩ Cable Control*

 Ar Influ. Surfaces*
 ₩ T.H. Graph/Text*
 ₩ Cable Control*

 Moving Tracer*
 ₩ Stage/Step Graph
 ™ Tendon Loss Graph
 lu. Text Modal Damping Rati Nodal Results of RS Moving Load Time History Bric Mode shape OK A 🔒 🔢 🞇 Cancel • 1H • ... • Md-Y C Md-Z Md-YZ C Md-XZ ... I Undeformed I Legend I Contour • 1H Htt Bi Apply Close 圖28. 各方向的主振態形狀

> 從圖28可以看出,由於在建模中沒有包含橋面板元素及勁度,所以可 看出有局部彎曲變形的現象。因此在對實際的鋼箱型橋梁建模時,考慮橋 面板的剛性效果來建模,會與實際情況更接近。

查看橋墩的支承反力

由於將支承模擬為彈性連接·因此在地震作用所引起的支承反力需在 彈性連接結果表格中查看。

根據輸入梁單元時所定義的單元座標系 · 軸向為垂直方向的反力 · 剪 力 -y 和剪力 -z 分別為橋梁橫向和縱向的水平反力。

▶ 查看地震載重作用下,橋梁縱向和橫向反力的最大、最小值。

Results>Results Tables>Elastic Link...

Loadcase/Combination > LCB1(CB) (開), LCB2(CB) (開) ↓

astic Lini	k No.			Loadcase/Co	ombination	
All	None	Inverse	Prev	DL(ST)		
57	- 1to4	1		Y-dir(RS)		
- 1 - 4 - 4				✓LCB1(CB)		
elect Ty	pe		odd [
			DUA			
			Delete			
			Peolace			
		-	Kepiace			
			Intersect			
				1.1.		

圖29. Records Activation 對話視窗

No	Load	Node	Axial (tonf)	Shear-y (tonf)	Shear-z (tonf)	Torsion (tonf*m)	Moment-y (tonf*m)	Moment-z (tonf*m)	3
		59	1.91	9.59	37.33	0.00	0.00	0.00	
	1 LCB1	63	1.91	9.59	37.33	0.00	0.00	0.00	
		60	1.85	0.00	37.33	0.00	0.00	0.00	
	2 LCB1	64	1.85	0.00	37.33	0.00	0.00	0.00	
		61	2.62	9.59	0.00	0.00	0.00	0.00	
	3 LCB1	65	2.62	9.59	0.00	0.00	0.00	0.00	
	4 1 0 0 4	62	2.55	0.00	0.00	0.00	0.00	0.00	
	4 LCB1	66	2.55	0.00	0.00	0.00	0.00	0.00	
		59	-5.32	-31.93	-11.41	0.00	0.00	0.00	
	1 LCB2	63	-5.32	-31.93	-11.41	0.00	0.00	0.00	
	0.1.000	60	5.27	0.00	-10.95	0.00	0.00	0.00	
	Z LUBZ	64	5.27	0.00	-10.95	0.00	0.00	0.00	
		61	-5.70	-31.94	0.00	0.00	0.00	0.00	
	3 LCB2	65	-5.70	-31.94	0.00	0.00	0.00	0.00	
	1 000	62	4.89	0.00	0.00	0.00	0.00	0.00	
	4 LCB2	66	4.89	0.00	0.00	0.00	0.00	0.00	

圖30. 查看支承處反力 (彈性連接結果表格)