midas **Civil**

台灣邁達斯技術部製作 www.midasuser.com.tw

MIDAS Information Technology Co., Ltd.

Ħ	錄

概要	1
橋梁概況及斷面	1
預力混凝土梁的分析步驟	2
使用的材料及其容許應力	3
設置操作環境	5
定義材料和斷面	6
定義斷面	7
定義材料的時間依存性特性	8
建立結構模型	11
定義結構組、邊界條件組和載重組	12
輸入邊界條件	14
輸入載重	15
輸入静載重	16
輸入鋼腱特性值	17
輸入鋼腱形狀	18
輸入鋼腱預力載重	21
定義施工階段	23
輸入移動載重資料	28
查看分析结果	. 31
利用圖形查看應力和構件內力	31
定義載重組合	34
利用載重組合查看應力	35
查看鋼腱的分析結果	39
查看載重組合條件下的內力	42

概要

本例題使用一個簡單的兩跨連續梁模型(圖1)來介紹midas Civil的施工 階段分析功能、鋼腱預力載重的輸入方法以及查看分析結果的方法等。主要重 點項目包括:分析預力混凝土結構時定義鋼腱特性、鋼腱形狀、輸入預力載重、 定義施工階段等的方法,以及在分析結果中查看混凝土的潛變和乾縮、鋼腱預 力等引起的結構的應力和內力變化特性的步驟和方法。

圖1. 分析模型

橋梁概況及斷面

分析模型為一個兩跨連續梁·其鋼腱的佈置如圖2所示·分為兩個階段來施工。

橋梁形式:兩跨連續的預力混凝土梁 橋梁長度:L = 2@30 = 60.0 m

圖2. 鋼腱佈置立面和剖面圖

預力混凝土梁的分析步驟

預力混凝土梁的分析步驟如下。

- 1. 定義材料和斷面
- 2. 建立結構模型
- 3. 輸入載重
 - 靜載重
 - 鋼腱特性和形狀
 - 鋼腱的預力載重
- 4. 定義施工階段
- 5. 輸入移動載重資料
- 6. 運行結構分析
- 7. 查看結果

使用的材料及其容許應力

□ 混凝土

設計強度: f_c '= 350 kgf / cm² 初期抗壓強度: f_{ci} = 240 kgf / cm² 彈性模數: E_c = 427 0 $W_c^{1.5}\sqrt{f_c}$ ' = 2.82 × 10⁵ kgf / cm²

容許應力:

容許	乾縮及潛變損失前之	所有損失發生以後
應力	暫時應力	使用載重時之應力
抗 拉 抗 壓	$f_{ca}' = 0.55 f_{ci} = 132 \ kgf \ / \ cm^2$ $f_{ia}' = 0.8 \sqrt{f_{ci}} = 12.4 \ kgf \ / \ cm^2$	$f_{ca} = 0.4 f_c' = 140 \ kgf \ / \ cm^2$ $f_{ta} = 1.6 \sqrt{f_c'} = 29.9 \ kgf \ / \ cm^2$

- □ 預力鋼腱 (ASTM A416-92低鬆弛270級, Φ15.2mm (0.6" strand))
 - 降伏強度: $f_{py} = 171 \, kgf \, / \, mm^2 \rightarrow P_y = 23.9 \, tonf \, / \, strand$ 抗拉強度: $f_{pu} = 190 \, kgf \, / \, mm^2 \rightarrow P_u = 26.6 \, tonf \, / \, strand$ 斷面面積: $A_p = 1.387 \, cm^2$ 彈性模數: $E_p = 2.0 \times 10^6 \, kgf \, / \, cm^2$ 張 拉 力: $f_{pi} = 0.7 \, f_{pu} = 133 \, kgf \, / \, mm^2$ 錨固裝置滑動: $\Delta s = 6 \, mm$ 磨擦係數: $\mu = 0.25 \, / \, rad$ $k = 0.007 \, / \, m$

容許	□雁力
	ル広ノコ

張拉時的最大應力	錨固瞬間(f _{po})	應力損失後使用狀態
$0.9 f_{py} = 153.9 \ kgf \ / \ mm^2$	$0.7f_{pu} = 133 \text{ kgf} / \text{mm}^2$	$0.8 f_{py} = 136.8 \ kgf \ / \ mm^2$

載重

□ 靜載重

自重

在程式中依 Self Weight 輸入

□ 預力載重

```
鋼腱 (\varphi15.2 mm×31 (\varphi0.6" - 31))
斷面面積: A<sub>u</sub> = 1.387 × 31 = 42.997 cm<sup>2</sup>
孔道直徑: 133 mm
張拉力: 抗拉強度的70%
f_{pj} = 0.7 f_{pu} = 13,300 \text{ kgf/cm}^2
P_i = A_u \times f_{pj} = 405.8 \text{ tonf}
張拉後的瞬間損失 (由程式自動計算)
摩擦損失: P_{(X)} = P_0 \cdot e^{(\mu\alpha + kL)}
\mu = 0.25, k = 0.007
錨固裝置滑動引起的損失: \Delta I_c = 6 \text{ mm}
彈性收縮引起的損失: 損失量 \Delta P_E = \Delta f_P \cdot A_{SP}
最終損失 (由程式自動計算)
鋼腱的鬆弛 (Relaxation)
```

混凝土潛變和乾縮引起的損失

□ 潛變和乾縮

條件

水泥: 普通矽酸鹽水泥
長期載重作用時混凝土的材齡: t_o = 5天
混凝土與大氣接觸時的材齡: t_s = 3天
相對濕度: RH = 70%
大氣或養護溫度: T = 20 ℃
適用規範: CEB-FIP
潛變係數: 由程式計算
混凝土乾縮變形率: 由程式計算

□ 活載重 適用規範:公路橋梁設計規範 載重種類:HS20-44(MS18) HS-20-44(MS18)

設置操作環境	
	開啟新檔(▲ New Project),並以 'PSC beam' 為檔名儲存(▲ Save)。 將單位系統設定為 'tonf' 和 'm'。 該單位系統可依據輸入資料的種類狀況隨時變更。
 ♀ 單位系統可透過 點擊畫面下端狀態 列的單位選擇鍵 (▼)來進行轉換。 	File / Ĩ New File / Ĩ Save (PSC beam) Tools / Unit System Ω Length > m ; Force > tonf OK
	Unit System Length Force (Mass) Image: margin mar

圖3. 設定單位系統

Apply

Cancel

🔲 Set/Change Default Unit System ОК

定義材料和斷面

下面定義PSC beam所使用的混凝土和鋼腱的材料特性。

	主選單 Property / Material PropertiesAdd
	Material ID (1); Type of Design > Concrete
	Standard > CNS560(RC) ; DB > C350 • Apply
♀ 同時定義多種材 料特性時,使用	
鍵進行指	Material ID (2) ; Name (Tendon)
派後可再連續輸入	Type of Design $>$ User Defined , Standard $>$ None
其他筆資料。	User Defined Analysis Data:
	Modulus of Elasticity (2e7)

 $E_p = 2.0 \times 10^6 \text{ kgf} / \text{cm}^2 = 2.0 \times 10^7 \text{ tonf} / \text{m}^2$

	Material ID 2 Name Tendon	
eterial Section Thickness ID Name Type Standard DB 1 C350 Concrete CN5560(RC) C350 2 Tendon User Def. ()))))))))))))))))))	Material ID 2 Name Tendon Material ID 2 Name Tendon Basticity Data User Defined Standard None Delete	

圖4. 定義材料對話視窗

定義斷面

PSC beam的斷面以矩形斷面(Solid Rectangle)來定義。
主選單 Property / I Section Properties Add
DB/User 表單
Section ID (1); Name (Beam)
Sect. Type > Solid Rectangle > User (開)
H (3); B (2)
Change Offset Offset > Center-Bottom

Section Da	a	
DB/User	Value SRC Combined PSC Tap	ered Composite
Section	D 1 Solid Rectang	le 💌
Name	Beam	3 CN591 -
T	B Sect. Name	V Built-Up Section
, i i i i i i i i i i i i i i i i i i i	Get Data from Sin DB Name Sect. Name	ale Angle CNS91 ¥
		m m
		onsider Shear Deformation.
Offset a Show	Center-Bottom inge Offset Calculation Results	Cancel Apply
Change Offset		EX
Offset : Center-Bottom 💌 Center	oc.: 🕫 Centroid O Co	enter of Section
Horizontal offset : 📀 to Extreme Fiber	C User I: 0 m	J: 0 m
Vertical offset : (* to Extreme Fiber	C User I: 0 m	J: 0 m
User Offset Reference : Ventroid	C Extreme Fiber(s)	
Display Offset Point	OK	Cancel

圖5. 定義斷面的對話視窗

定義材料的時間依存性特性

為了考慮混凝土材料之潛變、乾縮及抗壓強度的變化,以下將定義材料的 時間依存特性。

材料的時間依存特性參照以下資料來輸入。

- ▶ 28天強度: f_c' = 350 kgf/cm²
- ▶ 相對濕度: RH = 70 %
- ▶ 幾何形狀係數: 1.2m (2Ac/u= 2x6/10 = 1.2)
- ▶ 混凝土種類 : 普通水泥 (N.R)
- ▶ 拆模時間: 3天

主選單 Property / 🛄 Creep/Shrinkage... Add

```
Name (Creep/Shrinkage) ; Code > CEB-FIP(1990)
```

Characteristic compressive strength of concrete at the age of 28 days (fck) > (3500) tonf/m²

Relative Humidity of ambient environment (40 ~ 99) > (70) % 相對溼度 Notational size of member (1.2) m [♀] 構件幾何形狀係數

Type of cement > Normal or rapid hardening cement (N, R) 普通或早强水泥

Age of concrete at the beginning of shrinkage (3) day 意指拆模時間 Show Result... 查看潛變/乾縮曲線 OK

♥ 斷面幾何形狀比 較複雜時・可使用 主選單 Property > Change Property 的 Element Dependent Material 功能來輸入 h 值。

圖6. 定義材料的潛變和乾縮特性

混凝土澆注後隨時間變化而逐漸硬化,時間越長其強度越大。本例題根據 CEB-FIP所規定的混凝土強度發展函數考慮了混凝土此一特性。

主選單 Property / 📴 Comp. Strength Add	
Name (Comp. Strength) ; Type > Code	
Development of Strength > Code > CEB-FIP(1990)	
Concrete Compressive strength at 28 days (fck+delta f) $>$ (3500) tonf/m ²	
Cement type(s) (N, R : 0.25) Redraw Graph 查看抗壓強度曲線 OK	

圖7. 定義隨時間變化的混凝土強度發展函數

参照圖8將一般材料特性和時間依存材料特性相連接。即.將隨時間變化的材料特性指派給相對應的材料。

主選單 Property / 🕲 Material Link
Time Dependent Material Type > Creep/Shrinkage > Creep/Shrinkage
Comp. Strength > Comp. Strength
Select Material to Assign > Materials >
1:C350 > Selected Materials Add / Modify

Time Dependent Material Link	
	•
Time Dependent Material Type	
Creep/shrinkade Creep/sh	
Select Material to Assign	
Materials Selected Materials	
1:C350 2:Tendon	
	Ξ
<u> </u>	
Operation Delete	
Add / Modily Delete	
No Mat Creep/ Comp	
1 C350 Creep/ Comp	
<	
Close	
<	Ŧ

圖8. 連接時間依存材料特性

建立結構模型

利用 *Create Nodes...* **建立節點** 和 ¹ *Extrude Elements...* 擴展單元 的功 能來建立單元。

 ■ Front View ; Auto Fitting
 主選單 Node/Element > Nodes > Create Nodes... Coordinates (x, y, z) > (0, 0, 0) Apply
 主選單 Node/Element > Elements > Elements = Extrude...
 ③ Select All
 Extrude Type > Node →Line Element
 Element Type > Beam ; Material > C350 ; Section > 1: Beam
 Generation Type > Translate
 Translation > Equal Distance
 dx, dy, dz > (2, 0, 0)
 Number of Times > (30) ↓

圖9. 建立幾何模型

定義結構組、邊界條件組和載重組

為了進行施工階段分析·將各施工階段(construction stage)所要啟用(Active) 和撤銷啟用(Inactive)的單元和邊界條件定義為群組·並利用群組來定義各個施 工階段。

結構群組的定義方法如下。

♀ 為了方便於後處 理中利用 Bridge Girder Diagrams 功能查看分析結果 而將其定義為群 組。

樹形選單的 🖺 Group 表單, Structure Group > New (按右鍵)
Define Structure Group > Name (S-G) ; Suffix (1to2)Add
Define Structure Group > Name (All) Add Close
 Element Number (開) Select Window (單元: 1 to 18) Group > Structure Group > S_G1 (Drag & Drop) 滑鼠托放指派 Select Window (單元: 19 to 30) Group > Structure Group > S_G2 (Drag & Drop) 滑鼠托放指派
Select All
Group > Structure Group > All (Drag & Drop) 滑鼠托放指派

圖10. 定義結構組(Structure Group)

新建邊界組

邊界組名稱的建立方法如下。

樹形選單的 🖺 Group 表單, Boundary Group > New (右鍵選單)	
Define Boundary Group > Name (B-G) ; Suffix (1to2)	Add

圖11. 建立邊界組(Boundary Group)

新建載重組

静載重群組和預力載重群組名稱的新建方法如下。

樹形選單的 📴 Group 表單,Load Group > New(右鍵選單)
Define Load Group > Name (Self weight)
Define Load Group > Name (Tendon) ; Suffix (1to2)Add

Ver Structure Mode/Element Ver Structure Mode/Element Property Network Property Network Property Network	Propertier source revery rk Name : Tendon Suffix : Ito2 (Example 1 3 5 6 7 to 20 by 2) 10 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I and y C learner y - [Model View) × V and roots I Hap r × I D annyn - Poperty I D annyn - Poperty </th
Tree Menu Task Pane	Command Message Analysis Message	

圖12. 建立載重組(Load Group)

輸入邊界條件

邊界條件的輸入方法如下。

•	Element Number (關) ; 🎤 Node Number (開)
主選	單_Boundaries / Define Supports
	Select single (節點: 1)
	Boundary Group Name > B-G1
	Options > Add
	Support Type (Local Direction) > Dy, Dz, Rx (\mathbb{H})
	Select single (節點: 16)
	Boundary Group Name > B-G1
	Options > Add
	Support Type (Local Direction) > Dx , Dy , Dz , Rx (\mathbb{H})
	Select single (節點: 31)
	Boundary Group Name > B-G2
	Options > Add
	Support Type (Local Direction) > Dy, Dz, Rx (開) Apply

圖13. 定義邊界條件

輸入載重

本例題針對静載重和預力載重進行施工階段分析。移動載重分析則需 另行輸入移動載重資料。

Load / Static Loads / Static Load Cases	
Name (Dead Load)	
Type > Construction Stage Load (CS)	Add
Name (Prestress 1)	
Type > Construction Stage Load (CS)	Add
Name (Prestress 2)	
Type > Construction Stage Load (CS)	Add

注意:若欲進行施工階段分析,載重狀況定義的載重分類(Type)要選擇施 工階段載重(Construction Stage Load)。

Nam	e :	Prestress 2			Add	
Case		All Load Cas	se	•	Modify	
Туре	: :	Construction	n Stage Load (CS)	•	Delete	
Desc	ription :					
	No	Name	Туре		Description	-
	1	Dead Load	Construction Stage Load (C			-
	2	Prestress 1	Construction Stage Load (C			
	3	Prestress 2	Construction Stage Load (C			
*						

圖14. Static Load Cases 對話視窗

輸入静載重

使用 Self Weight 功能輸入静載重。

Load / Static Loads / *Self Weight...* Load Case Name > **Dead Load** Load Group Name > **Selfweight** Self Weight Factor > Z (-1)

Node	Element	Boundary	Mass	Load	
Self We	ight		•		
Load	Case Name			1	
Dead	Load	-			
Load	Group Nam	e		7	
Iselfw	leight	•			
Self	Veight Fact	or			
	ω	gt.2 Wgt	.x		
2	: 4				
1	_¥ 🗸	- All	.x		
	X				
x	0		_		
Y	0				
Z	0				
Load	Case)	(Y Z	Group		
Dead	Load (0 0 -1	Selfwei	g	
•	1	1	•		
Oper	ation			7	
1	<u>A</u> dd M	lodify De	lete		
			Close	1	
		_	-	_	
-			-		

圖15. 輸入静載重

輸入鋼腱特性值

輸入預力鋼腱特性值資料。

	Loa	d> Temp./Prestres	s > Tendon Pro	perty	Add	
		Tendon Name (Tendon);	Fendon Type	> Internal(P	ost-Tension)
		Material > 2: T	endon			
		Total Tendon A	rea (0.0042997)			
		或者	輸入資訊由程式	自動計算鋼腳	建總面積	
		Strand Diar	meter > 15.2mm	(0.6 ") ;		
		Number of	Strands (31)	ъ		
施加預力		Duct Diameter	(0.133) ; Rela	xation Coeffi	cient (45)	
- 定的應		Ultimate Strengt	th (190000) ;	Yield Strengt	th (171000)	
」 動 顧時間的	雁 Curvature Friction Factor (0.25) ; Wobble Friction Factor (0.007)			or (0.007)		
し減小・		Anchorage Slip(Draw in) > Beg	in (0.006) ;	; End (0.006)	لہ (
Z 為 鬆 弛						
/il 可採				Tendon Property		
公式來考				Namo	Turne	Add
る犯。 絃 玄中與				Tendon	Internal	Modify
う常數・	Add/Modify Ten	don Property				Delete
取值為	Tendon Type					
些蛔树取 見 分析	Tendon Name		Tendon			
1.111111111111111111111111111111111111	Tendon Type		Internal(Post-Tension)	-		

♀ 當鋼腱施 並維持其一 變時・作用 上的預力隨 推移逐漸地 此現象稱之 (Relaxat midas Civ 用Magura公 慮鋼腱的鬆 弛係數為該 鋼材有關的 一般鋼材 10 · 低鬆弛 值45 · 詳 手冊中的" 失"章節說明。

Tendon Name	Fendon	
Tendon Type	Internal(Post-Tension)	
Material 2	2: Tendon 💌	
Total Tendon Area	0.0042997 m^	<u>C</u> lose
Duct Diameter	0.133 m	
Relaxation Coefficient	Magura 💌 45	
Ultimate Strength	190000 tonf/m	m^2
Yield Strength	171000 tonf/m	m^2
Curvature Friction Factor	0.25	
Wobble Friction Factor	0.007 1/m	Tendon Area
External Cable Moment Magnifier	0 tonf/m	m^2
Anchorage Slip(Draw in) Begin : 0.006 m End : 0.006 m	Bond Type	Strand Diameter : 15.2mm(0.6°) ▼ Number of Strands : β1 OKCancel
	OK Cancel Ar	Apply

圖16. 輸入鋼腱特性值

輸入鋼腱形狀

首先輸入第一跨的鋼腱形狀。

Construction And Construction Construction Const	Cell 2013 - [E\02_MIDAS_Works\00_Cent2013_Manuals\04_BasicVPSC Beam y Load Analysis Results PSC Pushover Design Query Tools tool Color Using Load Using Load Using Load Using Load Cales Tempe Cade Cales Tempe Temp. Temp. Crade Ture Cade Cales Tempe Ture Cade Cales Ture Cade Cale	"] - (Model View) → C × × → C × → C × → C × → C × → Preterss Beam Loads → Pretersion Loads → Pretersion Loads → Pretersion Loads → Dresting Determine → C × →
Currey Pack Bean: Image: Bean Bean: Image: Bean Bean: Image: Bean	Tendon Proble tame Property Benerit No. Lait Type Tendon Number indon 1 Tendon 1018 Stradyt 1 indon 2 Tendon 1018 Stradyt 1 indon 2 Tendon 1018 Stradyt 1	Add Image: Control of the
x Avis Direction :	mand Message ∕ e-15 II-28.0.0 G-28.0.0 Σατ ♥	► 0° • × 0 • 4 • 4 • 4 • 4 • 4 • 4 • 4 • 4 • 4 • 4

圖17. 定義鋼腱形狀

接著輸入第二跨鋼腱的佈置形狀。

Load > Temp./Prestress > *Tendon Profile*... Add Tendon Name (**Tendon 2**) ; Tendon Property > **Tendon** ; Input Type > **3-D** Select Window (單元 : 13 to 30) Straight Length of Tendon > Begin (0) ; End (0) **Profile 鋼腱佈置** Reference Axis > **Straight** 1 > x (24), y (0), z (2), fix (關) 2 > x (30), y (0), z (2.8), fix (開), Ry (0), Rz (0) 3 > x (48), y (0), z (0.2), fix (開), Ry (0), Rz (0) 4 > x (60), y (0), z (1.5), fix (關) Profile Insertion Point (0, 0, 0) X Axis Direction > X

圖18. 定義第二跨的鋼腱佈置形狀

按以下方法確認所輸入的鋼腱形狀。

	Display
	Load View Design Node Element Property Boundary Misc
	Nodel Mass Lose to Mass Y Tendon Profile Name Y Tendon Profile Name Think Target for Geometric Stiffness Settlement Group Settlement Group Value Value of Heat of Hydration Func Name of Heat of Hydration Belement Convection Boundary of Heat of Hydration Prescribed Temperature of Heat of Hydration Heat Source for Heat of Hydration Meas Cooling Element for Heat of Hydration
Hit Base ▼ Hit	
	Display by Group
	Display by Selection Iv Display by Member
	Hidden Labels
	Display Option Reset All
	OK Cancel Apply
Tendon 1 N=1	

圖19. 確認輸入的鋼腱形狀

輸入鋼腱預力載重

定義完鋼腱的形狀後,在各施工階段施加相應的預力載重。

Load > Temp./Prestress Loads > *Tendon Prestress Loads...* Load Case Name > **Prestress 1** ; Load Group Name > **Tendon 1** Tendon > **Tendon 1** Selected Stress Value > **Stress** ; 1st Jacking > **Begin** Begin (133000) ; End (133000) Grouting : after (1) Stage

圖20. 輸入預力載重

♀ 定義對鋼腱管道 灌漿的施工階段。 灌漿前的應一力按實 際斷面計算。 後按組合後的斷面 來計算。 在 Grouting中輸入 after (1) Stage意 味著在張拉鋼腱之 後的下1個施工階 段灌漿。

₩ 選擇兩端張拉時

的先張拉端。

輸入鋼腱2的預力載重。

Load > Temp./Prestress Loads > *Tendon Prestress Loads...* Load Case Name > **Prestress 2** ; Load Group Name > **Tendon 2** Tendon > **Tendon 2** Selected Stress Value > **Stress** ; 1st Jacking > **Begin** Begin (133000) ; End (133000) Grouting : after (1) Stage Add

圖21. 輸入預力載重

定義施工階段

本例題的施工階段如表1所示。

表1.	各施工階段的結構組、邊界組和載重組	

施工	持續時間	結	構組	邊	界組	載重約	組
階段	(天)	Active	Inactive	Active	Inactive	Active	Inactive
CS1	20	S-G 1		B-G 1		Dead Load Tendon 1	
CS2	20	S-G 2		B-G 2		Tendon 2	
CS3	10000						

定義施工階段各步驟。

Load / Construction Stage / Define C.S...

Name	Duration	Date	Step	Result	Add
CS1 CS2	20 20	20 40	5	Stage,	Insert <u>P</u> rev
CS3	10000	10040	15	Stage,	Insert <u>N</u> ext
					<u>G</u> enerate
					Modify/Show
					Delete

圖22. Construction Stage 輸入視窗

施工階段分析模型的階段是由基本階段、施工階段、完工階段所組成。

基本階段(Base)是對單元進行添加或刪除、定義材料、斷面、載重和邊界條件的階段,可以說與實際施工階段分析無關,且上述工作只能在基本階段進行。

施工階段(CS n)是進行實際執行施工階段分析的各個階段,在此階段可以更改 載重狀況和邊界條件。

完工階段(Post CS)是對除施工階段載重以外的其他載重進行分析的階段,在 該階段可以將一般載重的分析結果和施工階段分析的結果進行組合。完工階段 可以被定義為施工階段中的任一階段。 以下定義施工階段1(CS1)。

Load / Construction Stage / Define C.S
Add
Name (CS 1); Duration (20)
Save Result > Stage (開) ; Additional Steps (開)
Additional Steps > Auto Generation > Step Number (5) Generate Step
Element 表單:
Group List > S-G1
Activation $>$ Age (5) Add
Boundary 表單:
Group List > B-G1
Activation > Support/ Spring Position > Deformed Add
Load 表單 :
Group List > Self weight ; Tendon 1
Activation >Active Day > First

圖23. 定義施工階段1(CS1)

定義施工階段2(CS2)。

Load / Construction Stage / E Define C.S
Name (CS 2); Duration (20)
Save Result > Stage (開) ; Additional Steps (開)
Additional Steps > Auto Generation > Step Number (5) Generate Step
Element 表單:
Group List > S-G2
Activation > Age (5) Add
Boundary 表單:
Group List > B-G2
Activation > Support/ Spring Position > DeformedAdd
Load 表單:
Group List > Tendon 2
Activation > Active Day > First ; Add

圖24. 定義施工階段2(CS2)

以下定義施工階段3(CS3)。在施工階段3中結構系統、邊界條件、載重並 無變化,只是將持續時間訂為10,000天的以進行時間依存性分析。

```
Load / Construction Stage / Define C.S...

Add

Name (CS 3) ; Duration (10000)

Save Result > Stage (開) ; Additional Steps (開)

Additional Steps > Auto Generation > Step Number (15) Generate Step ↓
```


圖25. 定義施工階段3(CS3)

完成建模和定義施工階段後,在施工階段分析選項中選擇是否考慮材料的 時間依存特性和彈性收縮引起的鋼腱應力損失,並指定分析潛變時的收斂條件 和迭代次數。

→ Last Stage可指 定為任一階段,透 過選擇其他階段來 指定。	Analysis / Analysis Con Final Stage > Las Analysis Option > Time Dependent E	ntrol / Construction t Stage Include Time De Effect Control	n <i>Stage</i> ependent Effect (開)	
	Creep/Shrink	age (開) ; Type	> Creep/Shrinkage	
	Convergence for	Creep Iteration :	1 8	
	Number of Ite	erations (5) :	Tolerance (0.01)	
♀ 選擇"自動分割	Auto Time Sten	Generation for La	urge Time Gan (開)	
時間 (Auto Time	Tendon Tension I	loss Effect (Creen	/Shrinkage) (開)	
Step Generation	Variation of Com	n Strength (盟)		
for Large Time Gap)"的話,程式	Tondon Tonsion I	p. Strengtn (冊)	a Shortoning) (問)	
會對持續一定時間 _	Ichuon Ichsion I	Joss Effect (Elasti		
以上的施工階段,				
住内部日勤主成时間先驟來考慮長期	Construction Stage Analysis Control Data			×
載重的效果。	Final Stage C Other Stage	S1 🔽	Cable-Pretension Force Control	C Add C Replace
Time Dependent Effect Con Time Dependent Effect Creep & Strinkage Type Creep Creep Convergence for Cre Number of Iterations Conly User's Creep Convergence for Cre Number of Iterations Convuergence for Cre Time Step Zondy User's Creep Tinteral Time Step Zondy Time Step	Restart Construction Stage Analysis Analysis Option Include Nonlinear Analysis Nonlinear Grindependent Stage C Include Poelta Effect Only Include Time Dependent Effect Load Cases to be Distinguished from Dead Load for r Load Cases to be Distinguished from Dead Load for r Load Cases : Dead Load © Strinkage Include Time Dependent Effect Deficient Include Time Dependent Effect Include Time Dependent Effect Include Time Dependent Effect Deficient Include Time Dependent Effect Plateation Include Time Dependent Effect Include Time Dependent Effect Include Time Dependent Effect Include Case : Dead Load Include Case : Dead Load Include Case : Dead Load Include Time Dependent Effect Include Time Dependent Effect Include Case : Dead Load Include Time Dependent Effect Include Time Dependent Effect Include Time Dependent Effect Include Time Dependent Effect Include Time Dependent Effect Include Time Dependent Effect Include Time Dependent Effect Include Time Dependent Effect	Select Stages for Restart r Analysis Control mulative Stage Delta Analysis Control Dependent Effect Control Case Add Delete Wearing Surfaces ant	Initial Force Control Convert Final Stage Member Forces to Initial Truss Convert Final Stage Member Forces to Initial Truss Change Cable Element to Equivalent Truss E Apply Initial Member Force to C.S. Initial Tangent Displacement for Erected Stru All Consider Stress Decrease at Lead Length Zo Consider Stress Decrease at Lead Length Zo Constant Constant Frame Output Concurrent Forces of Frame Concurrent Forces of Frame Calculate Concurrent Forces of Frame Calculate Concurrent Forces of Frame Save Output of Each Part of Composite Save Output of Current Stage (Beam/Truss) Remove Construction Stage Analysis Control	al Forces for Post C.S.
Image: Consider Re-Bar Conf Image: Consider Re-Bar Conf Image: Variation of Comp. Street Image: Apply Time Dependen Image: Tendon Tension Loss Eff Image: Constant		<i>3</i> 26. 指定施工隆	皆段分析撰項	

輸入移動載重資料

在施工階段分析中,對於沒有將類型定義為施工階段載重的一般靜力載重 或移動載重的分析結果,可在最後階段進行查看。本例題將在最後階段查看對 於移動載重的分析結果。

定義移動載重資料・

Load	d / Moving Load / Moving Load Code
	Moving Load Code > Taiwan
Load	d / Moving Load / <i>Traffic Line Lanes</i> Add
	Lane Name (Lane1)
	Vehicular Load Distribution > Lane Element
	Moving Direction > Both
	Eccentricity (0)
	Selection by > Two Points (1, 31) 🗘 🖬

♀ 該項為移動荷載 載入方向的選項。

View Structure Node/Element P Define Design Traffic Line Lane	poertes Boundary Load Analys Results PSC Pushover Design Query Tools Ittlement/Mac. Moving Load Code	🗱 Help 👻 🗕 🗗
Lane Name : Lane 1	AASHTO Standard Traffic Traffic Vehicles Moving Line Lanes Surface Lanes Load Cases it Concurrent Reaction Group	
	Traffic Line Lanes Moving Load Analysis Data	
+-+-+	Lane Name Add	S1 1 P2
a : Eccentricity	Lane 1 Modify	
Eccentricity : 0 m	Delete	
Wheel Spacing: 1.8 m	Cgpy	
Impact Factor : 0.0	Close	
Vehicular Load Distribution		
Cross Beam Group		
\$-61 v		
Skew	Tenton 1 Nat	
Moving Direction		
C Forward C Backward @ Both		
Selection by		
be 0.0		
60, 0, 0 m		
Operations		
Add Insert Delete		
No Elem Eccen. Impact Span	Model View/	Þ
	iessage Window	a x
2 2 0 0 F 3 3 0 0 F	he project will be saved by the auto-save feature.	^
and and and		

圖27. 定義車道

輸入車輛載重

輸入資料庫中內建的標準車輛載重HS-20-44(MS18)和HS20-44(MS18)。

圖28. 輸入車輛載重

本例題中不考慮HS-20-44(MS18)和HS20-44(MS18)載重同時在多條車道載入的 情況,故在此不定義車輛載重群組。 以下輸入移動載重狀況。

Load / Moving Load / <i>Moving Load Cases</i> Moving Load Cases > Add
Load Case Name > Moving Load
Sub-Load Cases > Add Vehicle Class > VL: HS-20-44(MS18) Min. Number of Loaded Lanes (0) Max. Number of Loaded Lanes (1)
Sub-Load Cases > Add Vehicle Class > VL: HS20-44(MS18) Min. Number of Loaded Lanes (0)
Max. Number of Loaded Lanes (1) List of Lanes > Lane1 → Selected Lanes

oving Load Cas	es	2
Load Case	Description	
Moving Load		Modify
		Delete
		Close

圖29. Moving Load Cases 對話視窗

pad Case Name : M escription :	loving Load	Sub - Load Case		Sub - Load Case	X
Load Case for Permit Ve	hicle	Load Case Data	(MS19)	Load Case Dat	
Multiple Presence Factor		Venicle Class : Juter Boconn	-	Vehicle Class : WLIFI520-44	(MS18)
Num of Loaded Lanes	Scale Factor	Scale Factor : 1		Scale Factor : 1	
1	1	Min. Number of Loaded Lanes :	0	Min. Number of Loaded Lanes	0
2	1	Max Number of Loaded Lanes	1		-
3	0.9	Max. Number of Loaded Lanes	J.	Max. Number of Loaded Lanes	μ
> 3	0.75	Assignment Lanes		Assignment Lanes	
Sub-Load Cases Loading Effect C Combined	[°] Independent	-> ->	ne1	·> <	ane1
Vehicle class S	cale Lane1				
VL:H520-44(M518) 1 VL:H5-20-44(M518) 1	Lane1 Lane1	<u>Ok</u>			⊆ancel
Add Modify	y Delete				

圖30. 定義移動載重狀況

運行結構分析

建模、定義施工階段全部輸入完成後,運行結構分析。

Analysis/ Perform Analysis...

查看分析结果

● 参照On Line Help 的 "Bridge Girder Diagram"。

● 参照 On Line Help 的 Results Stage/Step History Graph"。 對於midas Civil施工階段分析的結果,可查看到某一施工階段為止所累積 的全部構件的應力和位移⁹,也可查看某一單元隨施工階段的應力和位移的變 化。⁹

利用圖形查看應力和構件內力

利用 Bridge Girder Diagram 查看施工階段1(CS 1)中斷面下緣的應力。

Stage > CS1
Results / Bridge Girder Diagram
Step List > Last Step
Load Cases/Combinations $>$ CS: Summation
Diagram Type > Stress ; X-Axis Type > Distance
Bridge Girder Elem. Group > All
Components :
Combined (<i>開</i>) ; 3(+y, -z)
Allowable Stress Line > Draw Allowable Stress Line (開)
Tens. (320) \dashv

圖31. 施工階段1(CS1)中斷面下緣應力曲線

♀ Summation是對於 自重、靜載重、潛變 和乾縮、鋼腱等分析 結果的總和。 利用 Bridge Girder Diagram 查看在各施工階段所發生的最大應力。

Stage > Min/Max	
Results / Bridge Girder Diagram	
Load Cases/Combinations > CSmax: Summation (開)	
Diagram Type > Stress ; X-Axis Type > Distance	
Bridge Girder Elem. Group > All	
Components >	
Combined (<i>開</i>) ; 3(+y, -z)	
Allowable Stress Line > Draw Allowable Stress Line (開)	₊

欲詳細查看應力曲線的某一特定區域的結果時,只要用滑鼠框選該區域就可將其放大。點擊滑鼠右鍵選擇 Zoom Out All 即可回到原來狀態。

圖32. 在整個施工階段發生的最大、最小應力圖

以下將查看由潛變和乾縮造成的彎矩。由潛變和乾縮產生的彎矩依照一次 應力和二次應力分別輸出。

由於潛變係數和乾縮促使結構發生變形的力稱為一次應力。而當結構處於 超靜定狀態時,結構會產生束制上述變形的約束力,這種力稱為二次應力。

 Stage > CS3

 Results / Bridge Girder Diagram...

 Step List > First Step ; Last Step

 Load Case/Combination > CS: Creep Primary (開)

 Diagram Type > Force ; X-Axis Type > Distance

 Bridge Girder Elem. Group > All

 Components > My

 Generation Option >Current Stage-Step (開)

圖33. 由潛變引起的彎矩

定義載重組合

對於未定義成為施工階段載重的其他載重,將在最後施工階段進行結構分析,並對其結果進行組合。在此將與移動載重的分析結果進行組合,查看其容許應力(Com1),並定義施工階段載重的載重係數(Load Factor)來查看其極限强度(Com2)。載重組合的定義步驟如下。

↓ 載重組合的定 義和刪除只能在 (Base)基本階段 和(PostCS)完工 階段進行,故需 將階段轉換為完 工階段。 Stage > PostCS ⁹ (完工階段)

Result / Load Combination ...

 Active (備); Name (Com1); Type > Add

 LoadCase > Summation(CS); Factor (1.0)

 LoadCase > Moving Load (MV); Factor (1.0)

 Active (備); Name (Com2); Type > Add

 LoadCase > Dead Load(CS); Factor (1.3)

 LoadCase > Tendon Secondary; Factor (1.0)

 LoadCase > Creep Secondary(CS); Factor (1.3)

 LoadCase > Shrinkage Secondary(CS); Factor (1.3)

 LoadCase > Moving Load (MV); Factor (2.15)

圖34. 定義載重組合

利用載重組合查看應力

在最後施工階段查看施工階段分析結果和移動載重分析結果疊加起來的應 力圖形。

Stage > PostCS	
Results / Bridge Girder Diagram	
Load Case/Combinations > CSmax: Com1 (開)	
Diagram Type > Stress ; x-Axis > Distance	
Bridge Girder Elem. Group > All	
Components > Combined (\nexists); $3(+y, -z)$	
Allowable Stress Line > Draw Allowable Stress Line (關)	Ļ

圖35. 施工階段載重和移動載重疊加的應力圖

_	
Stage/Step Graph	Model View
在模型視窗並處於施	Stage $> CS3$
工階段才能被啟動。	Results / Stage/Step Graph
	Define Function > Beam Force/Stress Add New Function
	Beam Force/Stress > Name (正彎矩端) ; Element No. (10) ;
	Stress:
	Point > J-Node ; Component > Bend(-z)
	Combine Axial(含軸向應力) (開) →
	Stress:
	Beam Force/Stress > Name (負彎矩端) ; Element No. (15) ;
	Point > J-Node ; Component > Bend(+z)
	Combine Axial(含軸向應力) (開) 🖬 🔤
	Mode > Multi Func. ; Step Option > All Steps
	Check Functions to Plot > 正彎矩端 (<i>開</i>) ; 負彎矩端 (<i>開</i>)
	Load Cases/Combinations > Summation
	Graph Title > (Stress History) Graph
-	

利用 *Stage/Step Graph* 來查看承受正、負彎矩載重作用的部位在各施工 階段的應力變化。

圖36. 特定位置隨施工階段的應力變化圖形

在 Stage/Step Graph 上點擊滑鼠右鍵會出現關聯功能表 ·利用關聯功能表 的 Save Graph As Text 可將各施工階段的應力變化結果以文字檔案格式 儲存。

Save Graph As Text... 檔案名稱 (Stress History) ↓

圖37. 產生應力變化圖形的文字檔文件

利用表格查看應力

利用表格查看施工階段分析的結果時,可透過在 *Records Activation* 對話 視窗對單元、載重、施工階段、單元應力的輸出位置等進行選擇來分類查看。

下面利用表格查看支承位置(單元15)的施工階段應力變化。

Results / Result Tables / Beam / *Stress...* Node or Element > 單元 (15) LoadCase/Combinations > Summation(CS) (*開*) Stage/Step > CS1:001(first) ~ CS3:017(last) (*開*) Part Number > Part j (*開*) 니

♀ 按 Shift 鍵全選
 CS1:001到CS3:017
 所有的施工階段。

圖38. 各施工階段應力結果表格

查看鋼腱的分析結果

接著查看由於預力損失所引起的各施工階段的預力變化狀況。 Tendon Time-dependent Loss Graph 只能對目前施工階段中所包含的鋼腱查看張力變 化,故應先將施工階段轉換到包含相應鋼腱的施工階段後,再選擇 Tendon Time- dependent Loss Graph。鋼腱在各施工階段的應力變化還可透過點擊 Animate 產生動畫來查看。

Results / *Tendon Time-dependent Loss Graph...* Tendon > **Tendon 1** Animate

圖39. 預力鋼腱預力損失圖表

查看鋼腱座標

midas Civil 可透過表格查看鋼腱單元內的4等分點位置的鋼腱座標。

Load bination Forces * Bresses	Beam/Element Beam/Element Hencal Direction Areduction Moment	Mode 9 Modal 1	Shapes * Damping Ra Results of R	tio #	 Influ. Lines * Influ. Surfaces * Moving Tracer * 	T.H Results *	平· 上 Brit	lge Girder Dagram 0	Text Results utput Tables	
nonation kesuts		Mod	te snape		Moving Load	- D Ne L KE : 75 -4	CA CON CON	ige INN:PR	I ables	: 192
Menu • ×	Tendon Name	No	* (m)	у (m)	z (m)			1.001.0		- 104
ies works Group Report	Tendon 1	0	0.0000	0.0000	0.0000					
Analysis Control Data	Tendon 1	1	0.0000	0.0000	1.5000					
Construction Stage Analyzis [Stage-Last	Tendon 1	2	0.5000	0.0000	1.4255					
Structures	Tendon 1	3	1.0000	0.0000	1.3512					
Nodes : 31	Tendon 1	4	1.5000	0.0000	1.2772					
 Elements : 30 	Tendon 1	5	2.0000	0.0000	1.2038					
I Properties	Tendon 1	6	2.5000	0.0000	1.1309					
+ X Material : 2	Tendon 1	7	3.0000	0.0000	1.0590					
+ Time Dependent Meterial(C&S)	Tendon 1	0	4.0000	0.0000	0.9660					
Time Dependent Meterial(Comp. Strengt)	Tendon 1	10	4.0000	0.0000	0.8500					
	Tendon 1	11	5,0000	0.0000	0.7833					
Section : 1	Tendon 1	12	5.5000	0.0000	0.7184					
Bountanet	Tendon 1	13	6.0000	0.0000	0.6557					
+ supports : 5	Tendon 1	14	6.5000	0.0000	0.5953					
- C State Load Care 1 (Dead Load -1	Tendon 1	15	7.0000	0.0000	0.5376					
+ C Static Load Case 2 (Prestress 1 : 1	Tendon 1	16	7.5000	0.0000	0.4828					
+ I.C Static Load Case 3 (Prestress 2 :]	Tendon 1	17	8.0000	0.0000	0.4314					
Prestreming Tendon	Tendon 1	18	8.5000	0.0000	0.3836					
II Tendon Property : 1	Tendon 1	19	9.0000	0.0000	0.3400					
+ + + Tendon Profile : 2	Tendon 1	20	9.5000	0.0000	0.3011					
Construction Stage : 3	Tendon 1	21	10.0000	0.0000	0.2674					
• 📻 CS3 [10000 day(s)]	Tendon 1	22	10.5000	0.0000	0.2395					
	Tendon 1	23	11.0000	0.0000	0.2104					
	Tendon 1	25	12 0000	0.0000	0.2000					
	Tendon 1	26	12,5000	0.0000	0.2046					
	Tendon 1	27	13.0000	0.0000	0.2180					
	Tendon 1	28	13.5000	0.0000	0.2398					
	▲ → Tendon Coordinates	/				•				•
	4 Model View Tendon Coor	rdinates/								Þ
	Message Window	_	_	_						0.0
		-	_							

Results / Result Tables / Tendon / Tendon Coordinates...

圖40. 鋼腱座標表格

查看鋼腱伸長量

鋼腱的伸長量可透過表格查看。

Results / Result Tables / Tendon / Tendon Elongation ...

圖41. 鋼腱伸長量表格

查看載重組合條件下的內力

以下查看因數化載重組合條件下的彎矩。

Model View
Stage > PostCS
Results / Forces / Beam Diagrams
Load Cases/Combinations > CBall: Comb2
Components $> My$
Display Option > 5 Points ; No Fill ; Scale(1.0)
Type of Display > Contour (開) ; Legend (開) 니

圖42. 載重組合條件下的彎矩圖