例題4

單跨拱橋

midas Civil

例題 4. 單跨拱橋

概要	1
分析模型與載重條件 / 2	
	_
開啟新檔及設定基本操作環境	5
輸入構件的材料與斷面資料	6
使用節點和單元建立模型	9
建立拱肋 / 9	
建立垂直吊桿 / 10	
形成拱橋的主樑並複製構架 / 12	
建立橫繫梁 / 14	
建立斜撑 / 15	
輸入結構的邊界條件	20
輸入梁單元連接部的邊界條件 / 21	
建立橫繫梁群組 / 23	
輸入車輛移動載重與靜力載重	24
設定載重狀況 / 24	
輸入靜力載重 / 25	
輸入車輛移動載重 / 27	
執行結構分析	34
查看分析結果	34
載重組合條件 / 34	
查看變形 / 36	
剪力圖與彎矩圖/ 37	
查看影響線結果/ 39	

例題4. 單跨拱橋

概要

此例題將介紹利用 midas Civil 對有車輛載重作用的單跨拱橋進行建模、結構分析 及結果驗證的方法。

在此省略了"例題1"中所介紹的 midas Civil 的一些基本功能,且本例中主要採用圖示功能表。對 midas Civil 的功能或結構分析過程若有不解之處,請參考 On-line Help 的說明。

此例題所介紹的各階段分析步驟如下:

- 1. 開啟新檔並設定建模環境
- 2. 輸入構件的材料和斷面資料
- 3. 輸入節點和單元
- 4. 輸入建築物的邊界條件
- 5. 輸入車輛移動載重與靜力載重
- 6. 執行結構分析
- 7. 查看分析結果

分析模型與載重條件

本例題拱橋的模型如圖1所示,其基本情況如下。

- ▶ 橋樑形式 : 拱橋
- ▶ 橋樑等級 :1等橋樑
- ▶ 跨 徑:50m
- ▶ 設計車道數:2條車道
- ▶ 橋 寬 :14m

圖1. 分析模型資料

單跨拱橋

結構的平面如下所示。(參考圖2)

- ▶ 橫繫梁按 5m 間距排列
- > 按橋樑軸方向設置縱向斜撐
- ▶ 在中心線兩端 7m 的位置設置主樑和拱肋

Main Girder ±樑 10@5.0=50.0 →x

圖2. 拱橋的平面圖和立面圖

2-3

對於載重條件,為了簡化問題只考慮以下 3 種條件。

- ▶ 載重條件 1:靜載重 90 kN/m (只作用於主樑)
- ▶ 載重條件 2:人行道載重 6 kN/m (只作用於主樑)
- 載重條件 3:車輛移動載重

Taiwan, HS20-44(MS 18) ; HS-20-44(MS 18)

衝擊力係數(Impact Factor):

$$I = \frac{15.24}{L + 38.1} = \frac{15.24}{50 + 38.1} = 0.173$$

本例題的主要目的是為了介紹 midas Civil 的各項功能操作方法 · 因此有些條件會 與實際情況有出入 · 例題僅作為參考用 ·

開啟新檔及設定基本操作環境

選擇 🖪 New Project 開啟新檔·並選擇 🗐 Save 輸入檔案名稱存檔。

在畫面下方的狀態列點擊單位選擇鍵(∑)選擇 'kN'和 'mm'。該單位系統可以根 據輸入資料的種類依照使用者需求任意進行變更。

在此例題中為了提高操作上的熟練度,在建模過程中儘量不使用樹形選單或主選單, 而是以使用圖示選單(圖示工具列)為主。

圖3. 模型視景配置

輸入構件的材料與斷面資料

本案例結構構件的材料和斷面資料如下。

▶ 材料性質(ASTM)

1: A36 - 橫繫梁、斜撐構件

2: A572-50 - 主樑、拱肋、吊桿

▶ 斷面資料

1: Main Girder 主標: BOX 2100×600×10×10

2: Cross Beam 橫繫梁: I 1540×500×14×27

3: Arch Rib 拱肋: BOX 600×600×16×14

4: Hanger 吊桿: I 600×400×12×16

5: Strut 斜支撐 & 橫向支撐: BOX 600×500×10×14

6: Bracing & Stringer 水平斜撐 & 縱梁: RH 450×304×15×23

斷面1~5 屬於焊接製作的斷面(Built-up Section)故可使用 User 功能輸入,而斷面6 則可使用程式中內建的CNS91標準斷面DB。

	ID Name	Туре	Standard	DB	<u>A</u> dd	Elasticity Data
	1 A36 2 A572-50	Steel Steel	ASTM(S) ASTM(S)	A36 A572	Modify	Type or Design Steel Standard ASTM(S)
					Delete	Concrete
					⊆ору	Standard Code
					Import	Isotropic Orthotropic DB
<		1111		×	Glose	Poisson 9 Ratio : 0.3 Thermal Coefficient : 5.5556-003 [V[F] Weight Density : 7.556-003 [V[rm# Use Mass Density : 7.556-003 [V[rm# - Concrete : Module - 000 [V[F] Module - 00 [Staticht] : 10.0000-000 [V[F] Poisson 9 Ratio : 0 Thermal Coefficient : 0.0000-000 [V[F] Weight Density : : 0 Use Mass Dansity: : 0
	圖4	. Pr	operties	對話	視窗	Plasticity Data Plastic Monteinia Name None Thermal Transfer Specific Heat Backdard Monte Backdard Monte Backdard Monte Demote Ref. 0 Backdard Monte
						Damping Hatto : 0.00

- 1. 主選單 Properties>Material Properties
- 2. 點擊 Properties 對話視窗上方的 Material 表單 (如圖4. ❶)
- 3. 點擊 Add 鍵
- 4. 在 General 的 Material ID 輸入欄內輸入 '1' (如圖5. ●)
- 5. 在 Type 選擇欄中選擇 'Steel'
- 6. 在 Steel 的 Standard 選擇欄中選擇 'ASTM(S)'[♀]
- 7. 在 **DB** 選擇欄中選擇 'A36'
 - 8. 點擊 <u>Apply</u> 鍵

♀ 使用者可事先在Tools >Preferences中設定規範

預設值。

- 9. 在 General 的 Material ID 輸入欄內輸入 '2'
- 10. 在 Type 選擇欄中選擇 'Steel'
- 11. 在 Steel 的 Standard 選擇欄中選擇 'ASTM(S)'
- 12. 在 DB 選擇欄中選擇 'A572-50'
- 13. 點擊 OK 鍵

例題 4

Name 是用來區分各種 材料的 · 與材料的性質無 關。在資料庫中選擇某種 材料時 · 名稱欄中會自動 被賦予被選擇的材料名 字。	 選擇 Properties 對話視窗上方(如圖4.)的 Section 表單(或主選單 Property> Section) 點擊 Add 鍵 選擇 DB/User 表單並確認 Section ID 輸入欄內輸入 '1' 在 Name 欄位輸入 'Main Girder'[♀] 在 Section Shape 選擇欄內選擇 'Box' (如圖6. 的❶) 在 User 或 DB 選項選擇 'User' 在 H 欄位輸入 '2100' 在 B 欄位輸入 '600'
♀ 在Section 選擇欄輸入	 9. 在 tw 欄位輸入 '10' 10. 在 tf1 欄位輸入 '10' 11. 點擊 ▲ PPIy 鍵 12. 重覆步驟 3~11 建立斷面編號 2~5 (參考P2-6 所列斷面資訊) 13. 確認 Section ID 輸入欄為 '6' 14. 在 Name 欄位輸入 'Bracing & Stringer' 15. 在 Section Shape 選擇欄內選擇 'I-Section' (如圖6. 的●) 16. 在 User 或 DB 選項選擇 'DB' 並確認選擇 'CNS91' 17. 在 Sect Name 選擇欄輸入 'BH 450×304×15×23' (或直接躍取) [●]
構件名稱的第一個字母的 話,會自動顯示以該字母 為首的斷面列表,列表中 第一個斷面為該字母為首 的斷面中最重的斷面。	17. 位 Sect. Name 医弹簧钢 (KH 450×304×15×25 (或且设度取) 18. 點擊 0K 19. 點擊 Close 20. 在狀態列點擊單位選擇鍵 (▼) 將 'mm' 改為 'm'

圖 6. Section Data 對話視窗

單跨拱橋

使用節點和單元建立模型

建立拱肋

利用 Structure Wizard 功能建立拱肋 (參考圖7.)。

♀ 在 Input/Edit 表單的 Type 選擇欄可以對拱的 形式(投影等間距拋物線、投 影等間距橢圓、等間距 橢圓)作選擇。在此考慮 吊桿的等間距排列,選 擇'Parabola1'形式以使 拱肋上的節點投影到連 接兩端的直線上時為等 間距。(參考圖7.)

- 1. 主選單 Structure> Wizard>Base Structures>Arch
- 2. 在 Input/Edit 表單的 Type 選擇欄確認 'Parabola1', @
- 3. 在 Number of Segments 輸入欄確認 '10'
- 4. 在 L 輸入欄輸入 '50'
- 5. 在 H 輸入欄輸入 '10'
- 6. 在 Boundary Condition 選擇欄選擇 'None'
- 7. 在 Show Element No. 的左側表示 '✔'
- 8. 在 Material 選擇欄選擇 '2:A572-50'
- 9. 在 Section 選擇欄選擇 '3: Arch Rib'
- 10. 在 Insert 表單的 Insert Point 輸入欄確認 '0,0,0'
- 11. 點擊 <u>OK</u> 鍵
- 12. 點擊 🖾 Auto Fitting
- 13. 點擊 🛄 Front View

圖7. Arch Wizard 對話視窗及拋物線形1 形式的概念

建立垂直吊桿

利用 **1 Extrude Elements** 功能將拱肋上生成的節點按垂直向下投影延長以輸入 吊桿。(參考圖9)

1. 主選單 Node/Element>Element 點擊 1. Extrude Elements (圖8.的●) [♀] ₩ 擴展單元是將節點或 單元向任意位置移動並 2. 點擊 Node Number (切換 on) 沿著相應的移動路徑建 立 高 維 單 元 的 功 能 · 3. 點擊 🔽 Select Window 選擇為建立吊桿要進行投影延長的節點 2~10 (如:節點→線單元,線單 元→面單元,面單元→實 4. 在 Extrude Type 選擇欄確認 'Node→Line Element' 體單元) 5. 在 Element Attribute 選擇欄的 Element Type 確認 'Beam' 6. 在 Material 選擇欄選擇 '2: A572-50' 7. 在 Section 選擇欄選擇 '4: Hanger' 8. 在 Generation Type 選擇欄選擇 'Project' 9. 在 Projection Type 選擇欄確認 'Project on a line' 10. 用滑鼠點擊 Base Line definition 的 P1 輸入欄使其變為草綠色後指定節 點 1 和節點 11 '定義基準線'是定 ନ 義被投影直線(Line)的輸 11. 在 Direction 選擇欄確認 'Normal' 入欄·可透過輸入該直 線上的任意兩點來定 12. 點擊 Apply 鍵 義。 13. 點擊 ² *Change Element Parameters* (圖8.的@) 14. 點擊 🛄 Select Recent Entities (圖8.的③) 15. 在 Parameter Type 選擇欄選擇 'Element Local Axis' ♀ 調整吊桿腹板軸的方 向使其與橋軸的垂直方向 16. 在 Mode 選擇欄確認 'Assign' 與 'Beta Angle' 一致。(參考圖9,On-line Manual 的"Civil的功能> 17. 在 Beta Angle 輸入欄輸入 '90' 模型>修改單元參數") 18. 點擊 Apply 鍵 點擊 🛄 Shrink (圖9.的•)和 🔂 Hidden (圖11.的•)(切換 on),可確認'Beta角'

的輸入狀況。確認輸入狀態後,再次點擊 🖾 Shrink 和 🖸 Hidden 使其回到 切換 off 狀態。

例題 4

圖 8. 產生垂直吊桿

圖 9. 調整吊桿的配置角度 (Beta 角)

形成拱橋的主樑並複製構架

連接構架的兩端來輸入拱橋的主樑,並將所完成的一側構架複製到另一側。

1. 點擊 IIII Point Grid、 III Point Grid Snap (切換 off)

- ♀ 因本例題不使用格點,故為避免使用滑鼠 指定時出錯,將■■ 格點和 ₩ 捕捉格點功能 設置為切換 off狀態。
- 2. 點擊 🗎 Iso View 3. 主選單 Node/Element> // Create Elements 4. 在 Element Type 選擇欄確認 'General beam/Tapered beam' 5. 在 Material 選擇欄選擇 '2: A572-50' 6. 在 Section 選擇欄確認 '1: Main girder' 7. 在 Orientation 的 Beta Angle 輸入欄確認 '0' 8. 在 Intersect 選擇欄確認 Node 左側的 '✔' 9. 用滑鼠點擊 Nodal Connectivity 輸入欄使其變為草綠色後指定節點 1 和 節點 11 10. 點擊 🕓 Select All 11. 點擊 🦳 Translate Elements (如圖10.的•) 12. 在 Mode 選擇欄確認 'Copy' 13. 在 Translation 選擇欄確認 'Equal Distance' 14. 在 dx, dy, dz 輸入欄輸入 '0, 14, 0' 15. 在 Number of Times 輸入欄確認 '1' 16. 點擊 _____ 鍵 (參考圖10.)

單跨拱橋

圖 10. 完成主樑和拱形的模型

建立橫繫梁

利用 **Extrude Elements** 功能將一側主樑上的節點擴展到另一側的主樑來建立橫繫梁。

- 1. 點擊 📜 Extrude Elements (圖11.的•)
- 2. 點擊 K Select Polygon 並選擇節點 1 和節點 11~20
- 3. 在 Extrude Type 選擇欄確認 'Node→Line Element'
- 4. 在 Element Type 選擇欄確認 'Beam'
- 5. 在 Material 選擇欄確認 '1: A36'
- 6. 在 Section 選擇欄選擇 '2: Cross beam'
- 7. 在 Generation Type 選擇欄選擇 'Project'
- 8. 在 Projection Type 選擇欄確認 'Project on a line'
- 9. 點擊 Base Line Definition 的 PI 輸入欄使其變為草綠色後指定節點 21 和節點 31
- 10. 在 Direction 選擇欄確認 'Normal'[®]
- 11. 點擊 <u>Apply</u> 鍵

擇項目中 · Direction 是指單元投影的方 向。

♀ Project 功能的選

圖 11. 建立橫繫梁

建立斜撐

啟用(Activate)新建立的橫繫梁模型 · 利用 *Element Snap* 和 *└ Create Elements* 功能來完成縱向斜撐 (加勁肋條 Stringer)模型。

- 1. 點擊 İ Select Recent Entities
- 2. 圖示選單點擊 🞾 Activate
- 3. 圖示選單點擊 🎴 Element Number (切換 on)
- 4. 主選單 Node/Element> 12 Create Elements
- 5. 在 Element Type 選擇欄確認 'General beam/Tapered beam'
- 6. 在 Material 選擇欄選擇 '1: A36'
- 7. 在 Section 選擇欄選擇 '6: Bracing & Stringer'
- 8. 在 Orientation 的 Beta Angle 輸入欄確認 '0'
- 9. 在 Intersect 選擇欄確認 Node 左側的 '✔' Element 左側的 '✔'
- 10. 在畫面下端的狀態列·確認捕捉點的位置是否為1/2 (參考圖12.的●)
- 11. 用滑鼠點擊 *Nodal Connectivity* 輸入欄使其變為草綠色之後依次指定單元 59 和 60 的中點
- 12. 點擊 🚨 Element Number (切換 off) (參考圖12)

圖12. 完成縱向斜撐

現在輸入橋面的對角斜撐。

- 1. 選擇 📝 Create Elements 功能
- 2. 在視窗的 Element Type 選擇欄確認'General beam/Tapered beam'
- 3. 在 Material 選擇欄確認 '1: A36'
- 4. 在 Section 選擇欄確認 '6: Bracing & Stringer'
- 5. 用滑鼠點擊 Nodal Connectivity 輸入欄使其變為草綠色之後分別連接節
 - 點 1 和 43 以及節點 43 和 21 輸入兩個單元
- 6. 點擊 🦳 Translate Elements
- 7. 點擊 🏋 Select Single 並選擇上面所建立的兩個斜撐單元
- 8. 在 Mode 選擇欄確認 'Copy'
- 9. 在 Translation 選擇欄確認 'Equal Distance'
- 10. 在 dx, dy, dz 輸入欄輸入 '5, 0, 0'
- 11. 在 Number of Times 輸入欄輸入 '4'
- 12. 點擊 Apply 鍵
- 13. 點擊 // Mirror Elements
- 14. 點擊 <a>
 Select Previous ↓ Select Recent Entities 選擇所有對角斜撐

 單元
- 15. 在 Mode 選擇欄確認 'Copy'
- 在 *Reflection* 選擇 *y-z plane*·點擊 *x* 輸入欄使其變為草綠色之後指定 節點 16 (或在 *x* 輸入欄輸入 '25')
- 17. 點擊 Apply 鍵 (參考圖13.)

圖13. 完成橋面模型

以拱肋的中央為基準輸入對稱排列於兩側的斜撐構件。

- ♀ ∷ Inverse Activation 是將目前處於啟用狀態 的節點和單元轉換為撤 銷啟用的狀態,而將處 於撤銷狀態的節點和單 元轉換為啟用狀態的功 能。
- 1. 點擊 🗮 Inverse Activate (圖14.的•) 🗘
- 2. 點擊 📝 Create Elements
- 3. 在 Material 選擇欄確認 '1: A36'
- 4. 在 Section 選擇欄選擇 '5: Strut'
- 5. 在 Beta Angle 輸入欄確認 '0'
- 6. 用滑鼠點擊 Nodal Connectivity 輸入欄使其變為草綠色之後,分別連接節點 4 和 24、5 和 25、6 和 26、7 和 27、8 和 28 (參考圖14.)。

圖14. 完成橋門斜撐

單跨拱橋

- 1. 點擊 🕅 Select Single · 並選擇 5 個橋門斜撐單元 (單元111~115)
- 2. 點擊 🎾 Activate 🎙
- 3. 點擊 🎽 Element Number (切換 on)
- 4. 在 1/2 Create Elements 對話視窗的 Element Type 選擇欄確認 'Gene ral beam/Tapered beam'
- 5. 在 Material 選擇欄確認 '1: A36'
- 6. 在 Section 選擇欄選擇 '6: Bracing & Stringer'
- 7. 在 Orientation 的 Beta Angle 輸入欄確認 '0'
- 8. 在 Intersect 選擇欄確認 Node 左側的 '✔'
- 9. 點擊 Nodal Connectivity 輸入欄使其變為草綠色之後,依次連接單元 111~115 的中央來輸入縱方向的斜撐構件
- 10. 點擊 🎽 Element Number (切換 off)
- 11. 點擊 Nodal Connectivity 輸入欄使其變為草綠色之後,依次指定節點 4 和53、24和53、5和54、25和54、54和7、54和27、55和8、55和28 (參考 圖15.)

圖15. 完成拱的斜撐

為建立拱中央的協 撐·只選擇與該單元相 連的部分並將其啟用。

₩ 輸入單元的過程中未

能正確選擇所需物件 時,可使用鍵盤上的Esc

鍵, 或點擊滑鼠的右鍵選 擇Context Menu下端的

Cancel功能表來取消輸

入内容・

G

輸入結構的邊界條件

建立完模型之後,需定義邊界條件(參考圖2.(a)的邊界條件)。

點擊 Activate All
 在 Model Entity 表單選擇 Boundary 確認 'Supports' (如圖16.)
 在 Options 選擇欄確認 'Add'
 點擊 Select Single
 選擇節點 '1' · 在 'D-ALL' 的左側表示 '√'
 點擊 Apply 鍵
 選擇節點 '21' · 只在 'Dy, Dz' 的右側表示 '√'
 點擊 Apply 鍵
 選擇節點 '31' · 只在 'Dz' 的右側表示 '√'
 點擊 Apply 鍵
 選擇節點 '31' · 只在 'Dz' 的右側表示 '√'
 點擊 Apply 鍵

圖16. 輸入結構的邊界條件

例題 4

輸入梁單元連接部的邊界條件

使用 Beam End Release 功能按以下步驟輸入梁單元端部的邊界條件。(參考圖17)

- ▶ 吊桿構件的兩端 : 對單元座標系 z 軸為鉸接條件
- ▶ 斜撐構件的兩端:對單元座標系 y、z 軸為鉸接條件
- ▶ 與主樑相連接的橫繫梁兩端 : 對單元座標系 y、z 軸為鉸接條件
 - 1. 在 Boundary 功能目錄表內選擇 'Beam End Release'
 - 2. 在 Options 選擇欄確認 'Add/Replace'
 - 3. 點擊 *Filter* 選擇欄 (圖17.的●) 選擇 'z'[♀]
- 4. 點擊 💽 Select All
- 5. 在 General Types and Partial Fixity 選擇欄只對 i-Node、j-Node 的 'Mz' 表示 '✓'[♀]
- 6. 點擊 Apply 鍵
- 7. 點擊 Filter 選擇欄(圖17.的①)選擇 'none'
- 8. 點擊 🚺 Select Identity-Elements (圖17.的2)
- 9. 在 Section 選擇欄選擇 '6 :Bracing & Stringer'
- 10. 點擊 _____ 鍵
- 11. 在 General Types and Partial Fixity 選擇欄點擊 Pinned-Pinned 鍵 (或 在 *i-Node*、*j-Node*的 'My、Mz' 選擇 '✓')
- 12. 點擊 Apply 鍵
- 13. 點擊 🚺 Select Identity-Elements (圖17.的@)
- 14. 在 Section 選擇欄選擇 '2: Cross beam'
- 15. 點擊 _____ 鍵
- 16. 在 Select Identity-Elements 對話視窗點擊選擇 Close 鍵
- 17. 點擊 🞾 Activate
- 18. 點擊 🏊 Element Number (切換 on)
- 19. 點擊 View>Select> Network Select Intersect Line 選擇單元 59~69
- 20. 在 General Types and Partial Fixity 選擇欄點擊 Pinned-Fixed 鍵 21. 點擊 Apply 鍵
- ♀ ≥ Select Intersect 是用滑鼠任意畫一直線來 選擇與該直線相交的單元 的功能。

♀ 對Filtering Selection的 說明請參考線上幫助手冊

欲確認單元座標軸時

Element 表單的局部座

或Getting Started &

Tutorials

G

標。

- 22. 在單元選擇輸入視窗 (圖17的❷) 輸入 '80to90' 並按鍵盤上的 [Enter] 鍵
- 23. 在 General Types and Partial Fixity 選擇欄點擊 Fixed-Pinned 鍵
- 24. 點擊 Apply 鍵
- 25. 點擊 🎽 Element Number (切換 off)
- 26. 點擊 🕨 Activate All
- 27. 點擊 **Node Number** (切換 off)

圖17. 輸入梁端釋放條件

建立橫繫梁群組

為輸入車輛移動載重而建立橫繫梁群組。

- 1. 點擊 🔭 Select Identity-Elements
- 2. 在 Select Type 選擇欄確認 'Section'
- 3. 在 Section 選擇欄選擇 '2: Cross beam'
- 4. 點擊 _____ 鍵
- 5. 在 Select Identity-Elements 對話視窗點擊選擇 Close 鍵
- 6. 點擊樹形選單的 🕒 Group 表單
- 7. 圖示選單點擊 🞾 Activate
- 8. 圖示選單點擊 🛄 Top View、點擊 🕚 Select All
- 9. 選擇 Structure Group 點擊滑鼠右鍵選擇 New 並輸入 'cross beam 1'
- 10. 由 *Structure Group* 選取 'cross beam 1' 將其拖放到模型視窗進行指派 (圖18的●)
- 11. 點擊圖示選單 🕨 Activate All 、 🗎 Iso View

圖18. 建立橫繫梁群組

輸入車輛移動載重和靜力載重

設定載重狀況

輸入載重之前先設定載重狀況(Load Cases)。

- 1. 主選單 Load>Static Load Cases
- 2. 如圖19 · 在 Static Load Cases 對話視窗的 Name 輸入欄輸入 'Dead Load'
- 3. 在 Type 選擇欄選擇 'Dead Load'
- 4. 點擊 Add 鍵
- 5. 在 Name 輸入欄輸入 'Sidewalk Load'
- 6. 在 Type 選擇欄選擇 'Dead Load'
- 7. 點擊 _____ Add _ 鍵
- 8. 點擊 Close 鍵

	ne	: Sidewalk	Load		Add
Cas	e e	: All Load	Case		Modify
Гур	e	:		•	Delete
)es	criptio	in :			
Τ	No	Name	Туре	Descr	iption
·	1	Dead Load	Dead Load (D)		
Т	2	Sidewalk Lo	Dead Load (D)		
-					
ŧ					
ŧ					
÷					
ŧ					
ŧ					
*					
÷					
÷					
*					
÷					
*					
*					
+					

圖19. Static Load Cases 對話視窗

輸入靜力載重

輸入靜力載重(載重狀況 1、2)。

為了簡化問題·假定靜載重(90 kN/m)和人行道載重(6 kN/m)只作用於主樑之上。(參考圖20.)

1.	點擊 🔀 Select Identity-Elements
2.	在 Select Type 選擇欄確認 'Section'
3.	在 Section 選擇欄選擇 '1: Main Girder'
4.	點擊 Add 鍵
5.	在 Select Identity-Elements 對話視窗點擊 Close 鍵
6.	主選單 Load>Element Beam Loads
7.	在 Load Case Name 選擇欄確認 'Dead Load'
8.	在 Options 選擇欄確認 'Add'
9.	在 Load Type 選擇欄確認 'Uniform Loads'
10.	在 Direction 選擇欄確認 'Global Z'
11.	在 Projection 選擇欄確認 'No'
12.	在 Value 選擇欄確認 'Relative'
13.	在 x1 輸入欄輸入 '0', x2 輸入欄輸入 '1', W 輸入欄輸入 '-90' kN/m
14.	點擊 Apply 鍵
15.	點擊 🖻 Select Previous
16.	在 Load Case Name 選擇欄確認 'Sidewalk Load'
17.	在 Options 選擇欄確認 'Add'
18.	在 Load Type 選擇欄確認 'Uniform Loads'
19.	在 Direction 選擇欄確認 'Global Z'
20.	在 Projection 選擇欄確認 'No'
21.	在 Value 選擇欄確認 'Relative'
22.	在 x1 輸入欄輸入 '0', x2 輸入欄輸入 '1', W 輸入欄輸入 '-6' kN/m
23.	點擊 Apply 鍵
24.	點擊 <u>Close</u> 鍵

圖20. 載重輸入狀況

輸入車輛移動載重

首先定義車道。(參考圖21)

- 1. 主選單的 Load >Moving Load
- 2. Moving Load code 對話視窗選擇'Taiwan'
- 3. 選擇 Moving Load Analysis Data>Traffic Line Lanes
- 4. 在 Traffic Line Lanes 對話視窗點擊 Add 鍵
- 5. 在 Lane Name 輸入欄輸入 'Lane 1'
- 6. 在 Eccentricity 輸入欄確認 '-4.5' m
- 7. 確認 Wheel Spacing 為'1.8' m
- 8. 在 Impact Factor 輸入欄輸入 '0.173'
- 9. 在 Vehicular Load Distribution 輸入欄確認 'Cross Beam'
- 10. 在 Cross Beam Group 輸入欄確認 'cross beam 1'
- 11. 在 Moving Direction 選擇欄確認 'Both'
- 在 Selection 的 2 Points、Picking 及 Number 中選擇 '2 Points', 用滑 鼠點擊右側的輸入欄使其變為草綠色後,指定節點 1、11 [♀]
- 13. 點擊 OK 鍵
- 14. 在 Traffic Line Lanes 對話視窗點擊 _____ Add 鍵
- 15. 在 Lane Name 輸入欄輸入 'Lane 2'
- 16. 在 Eccentricity 輸入欄確認 '-8.1' m
- 17. 在 Impact Factor 輸入欄輸入 '0.173'
- 18. 在 Vehicular Load Distribution 輸入欄確認 'Cross Beam'
- 19. 在 Cross Beam Group 輸入欄確認 'cross Beam 2'
- 20. 在 Moving Direction 選擇欄確認 'Both'
- 在 Selection 的 2 Points、Picking 及 Number 中選擇 '2 Points',用滑 鼠點擊右側的輸入欄使其變為草綠色後,指定節點 1、11
- 22. 點擊 OK 鍵
- 23. 點擊 Close 鍵

♀ 車道為曲線或不連續 而不方便以2 Points來 輸入時可選擇Element Number・用鍵盤直接輸 入單元編號。

raffic Line Lanes	×	Define Design Traffic Line Lane
Lane Name	Add	Lane Name : Lane 1
Lane 1	Modify	
	Delete	e e
	Сору	Start Fod
	Close	a : Eccentricity
1		Eccentricity : -4.5 m
		Wheel Spacing: 1.8 m
		Impact Factor : 0.173
		C Lane Element Cross Beam Group Cross beam 1
		Skew Start 0 : End 0 : [deq]
		Moving Direction
		Selection by
		© 2 Points C Picking C Number
		m
		m
		Operations Add Insert Delete
		No Elem Eccen. Impact Span A (m) Factor Start
		1 20 -4.5 0.173
		2 21 45 0.172

圖21. Traffic Line Lanes 對話視窗

接下來將說明定義車輛移動載重 HS20-44(MS18) 和 HS-20-44(MS18) 的方法。[♀] (參考圖22)

1. 主選單 Load>Moving Load Analysis Data>Vehicles 2. 在 Vehicles 對話視窗點擊 _____ Add Standard 鍵 3. 在 Standard Name 選擇欄確認 'Taiwan' 4. 在 Vehicular Load Name 選擇欄確認 'HS20-44(MS18)' 5. 點擊 Apply 鍵 6. 在 Vehicular Name 選擇欄選擇 'HS-20-44(MS18)' 7. 點擊 OK 鍵 8. 點擊 <u>Close</u>

鍵

圖22. 定義標準車輛載重

♀ midas Civil 程式内 建有台灣公路橋樑載 重、AASHTO、中國公 路橋樑載重、中國城市 橋樑載重、中國鐵路橋 涵載重…等標準車輛載 重。

例題 4

♀ 利用Vehicle Classes 定義 功能可定義車輛載重 組。若像本例題一樣將 HS20-44(MS18)和HS-20-44(MS18)載重定義 為相同車輛載重組的 話,可在兩種車輛載重 的分析結果中算出構件 內力、變形、反力等的 最大、最小值。

こ義車車	輛載重群組。 🏵 (參考圖23)
1.	主選單 Load>Moving Load Analysis Data>Vehicles Classes
2.	在 Vehicles Classes 對話視窗點擊Add 鍵
3.	在 Vehicles Class Data 對話視窗的 Vehicles Class Name 輸入欄輸入
	'HS20'
4.	選擇 Vehicle Load 項目中的 HS20-44(M18) 和 HS-20-44(M18) 後·點
	擊 _→ 鍵將其移動到 Selected Load 項目
5.	點擊 Vehicles Class Data 對話視窗的 OK 鍵
6.	點擊 <u>Close</u> 鍵

Class Name H520	<u>A</u> dd <u>M</u> odify	Vehicle Class Data		×
	Delete	Vehicle Class Name :	H520	-
	Close	Vehicle Load	Selected Load H5-20-44(MS18) H520-44(MS18) <-	

圖23. 定義車輛載重組

以下定義車輛移動載重條件。 6 (參考圖24)

- ◆ 利用 Moving Load Case功能定義車輛載重 施加條件。其中包括在 哪條車道施加何種車輛 載重、可同時施加車輛 載重的最大、最小車道 數等。
- 1. 主選單 Load>Moving Load Analysis Data>Moving Load Cases
- 2. 在 Moving Load Cases 對話視窗點擊 Add 鍵
- 3. 在 Moving Load Cases 對話視窗的 Load Case Name 輸入欄輸入'MVL'
- 4. 保留在 Multiple Presence Factor 欄內'Scale Factor'的預設數值
- 5. 在 Sub-Load Cases 選擇欄點擊 Add 鍵
- 6. 在 Load Case Data 的 Vehicle Class 選擇欄確認 'VC:HS20'
- 7. 在 Scale Factor 輸入欄確認 '1'
- 8. 在 Min. Number of Loaded Lanes 輸入欄輸入 '1'
- 9. 在 Max. Number of Loaded Lanes 輸入欄輸入 '2'
- 10. 選擇 Assign Lanes 的 List of Lanes 項目中的 'lane1, lane2' 後 · 點擊 → 鍵將其移動到 Selected Lane
- 11. 在 Sub-Load Cases 對話視窗點擊 OK 鍵
- 12. 在 Moving Load Cases 對話視窗點擊 Apply 鍵
- 13. 點擊 Close 鍵

例題 4

圖 24. 定義車輛移動載重

下面將定義分析車輛移動載重的方法。(參考圖25.)

- 1. 主選單 Analysis>Analysis Control>Moving Load
- 2. 在 Analysis Method 選擇欄確認 'Exact'
- 3. 在 Load Point Selection 選擇欄確認 'All Points'
- 4. 在 Influence Generating Points 的 Number/Line Element 輸入 '5'
- 5. 在 Analysis Results 的 Frame 選擇 'Normal'
- 6. 在 Calculation Filters 將 Reactions, Displacements, Forces/Moments 等 均選擇確認為 'All'
- 7. 點擊 OK 鍵
- 8. 點擊 Node Number (切換 off)

- Analysis Method	Uption
• Exact 💿	Pivot 💿 Quick
Load Point Selection	endent Point 💿 All Points
Influence Generating Poi	ints
 Number/Line Eleme Distance between P 	ent : 5 🚔 loints : 0 ft
Analysis Results	Frame
 Center + Nodal Stress Calculation 	 Normal + Concurrent Force Combined Stress Calculation
Calculation Filters Reactions All 	Group :
 Displacements All 	Group :
 Forces/Moments All 	Group :

圖25. Moving Load Analysis Control 對話視窗

例題 4

進行結構分析

對輸入載重條件和邊界條件的結構物進行結構分析。

點擊 ն Analysis

查看分析結果

載重組合條件

以下將介紹對結構分析的 3 種載重條件 (靜載重、人行道載重、車輛移動載重) 進行線性組合(Linear Load Combination)的方法。

在本例題中只輸入以下 1 種載重組合條件並對其結果進行確認。此載重組合是任 意設置的,僅供本例練習參考,與進行實際設計時所使用的條件無關。

▶ 載重組合條件 1(LCB1): 1.0 (靜載重+人行道載重+MVL)

圖26. Load Combinations 對話視窗

載重組合條件是在 主選單 的 Results>Load Combinations 開啟載重組合對話視窗, 並按以下步驟來輸入的。

- 1. 主選單 選擇 Results>Load Combinations
- 2. 在 Name 輸入欄輸入 'LCB1'
- 3. 在 Type 選擇欄確認 'Add'
- 4. 用滑鼠點擊 Load Case 選擇欄後,利用 鍵在選擇欄選擇'Dead Load (ST)'
- 5. 在 Factor 輸入欄確認 '1.0'
- 6. 用滑鼠點擊第二個選擇欄後,利用 🗹 鍵在選擇欄選擇 'Sidewalk(ST)'
- 7. 在 Factor 輸入欄確認 '1.0'
- 8. 用滑鼠點擊第三個選擇欄後,利用 🔳 鍵在選擇欄選擇 'MVL(MV)'
- 9. 在 Factor 輸入欄確認 '1.0'
- 10. 點擊 Close 鍵

查看變形

按以下步驟確認變形狀況。

- 1. 主選單 Results>Deformations> **且** Deformed Shape (圖27.的•)
- 2. 在 Load Cases/Combinations 選擇欄選擇 'CBmin:LCB1'
- 3. 在 Components 選擇欄確認 'DXYZ'
- 4. 在 Type of Display 選擇欄對 'Undeformed', 'Legend' 表示 '✓' 標記
- 5. 在 Type of Display 選擇欄點擊位於 Deform 右側的 🔜 鍵
- 6. 在 Deformation Type 選擇欄選擇 'Real Deform'
- 7. 確認 Apply upon OK 的 '✔' 標記
- 8. 點擊 OK 鍵
- 9. 點擊 🔂 Hidden (切換 on)

圖27. 變形(Deformed Shape)

剪力圖與彎矩圖

剪力圖與彎矩圖結果的查看方法基本相同,故在此只以查看彎矩圖為例進行說明。 另外此處介紹查看結構物某一部分的彎矩圖的結果。以X-Z平面為例介紹顯示該平 面彎矩圖的步驟。♀

♀ 實際工作中經常需 要對某一特定部位的分 ł 材 S H 月

析結果進行查看、分 析.此時可以利用 ^❹ <i>Select by Plane</i> 功能輸	1. 點擊 🕞 Hidden (切換 off)
出相應平面上的分析結 里 。	2. 和享 Innual View
*	3. 點擊 📑 Select by Plane
	4. 在 Plane 表單選擇 'XZ Plane'
	5. 用滑鼠在X-Z平面選擇節點 1 (自動抓取 y=0)
	6. 點擊 Close 鍵
	7. 點擊 🔀 Activate
	8. 點擊 <u></u> Front View
	9. 主選單 Results>Forces> 🤜 Beam Diagrams (圖28的❶)
₩Vmin:車輛載重作	10. 在 Load Cases/Combinations 選擇欄選擇 'MVall: MVL' ⁹
用於建業物時僅下的 最小值	11. 在 Components 選擇欄確認 'My'
Mvmax : 車輛載重作 用於建築物時構件的	12. 在 Display Options 選擇欄選擇 '5 Points', 'Line Fill'
最大值	13. 在 Scale 輸入欄確認 '1.0'
	14. 在 Type of Display 選擇欄確認 'Legend' 的 '✔' 標記
	15. 點擊 Apply 鍵

單跨拱橋

圖28. 梁單元的彎矩圖 My (XZ 平面)

例題 4

查看影響線結果

首先來查看支承反力的影響線。下面是對支承B1 (節點1) 的結果。

- 1. 點擊 🖻 Activate All
- 2. 主選單 Results>Moving Load>Influ. Line> 🔓 Reactions (圖29的•)
- 3. 在 Line/Surface Lanes 選擇欄確認 'Lane 1'
- 4. 在 Key Node 輸入欄確認 '1'
- 5. 在 Scale Factor 輸入欄確認 '1.0'
- 6. 在 Components 選擇欄確認 'FZ'
- 7. 在 Type of Display 選擇欄確認 'Legend'
- 8. 點擊 Apply 鍵
- 9. 點擊 🛄 Front View

圖29. 對支承反力的影響線

對支承反力的影響線結果透過動畫來進行查看。

- 1. 點擊 🗎 Iso View
- 2. 在 Type of Display 選擇欄選擇 'Legend', 'Animate'
- 3. 點擊 Apply 鍵
- 4. 點擊 🔤 Record 鍵 (圖30.的①)
- 5. 查看結果後點擊 ¹ Close 鍵使其回到原來的畫面 (圖30.的❷)

圖30. 對支承反力影響線的動畫處理畫面

- 1. 點擊 🛄 Front View
- 2. 主選單 Result>Moving Load>Influ. Lines> 用 Displacements (圖310)
- 3. 在 Line/Surface Lanes 選擇欄確認 'Lane 1'
- 4. 在 Key Node 輸入欄輸入 '15'[♀]
- 5. 在 Scale Factor 輸入欄輸入 '2.0'
- 6. 在 Components 選擇欄選擇 'DZ'
- 7. 在 Type of Display 選擇欄確認 'Legend'
- 8. 點擊 Apply 鍵

圖31. 變形形狀的影響線

♀ 在Key Node/Elem 輸入欄也可利用滑鼠編 輯功能來選擇單元或節 點。 如圖32. 查看單元的彎矩的影響線。

- 主選單 Result>Moving Load>Influ. Lines>
 Image: Beam Forces/Moments (圖32.的●)
- 2. 在 Line/Surface Lanes 選擇欄確認 'Lane 1'
- 3. 在 Key Element 輸入欄輸入 '23'
- 4. 在 Scale Factor 輸入欄輸入 '2.0'
- 5. 在 Parts 選擇欄確認 ' i '
- 6. 在 Components 選擇欄選擇 'My'
- 7. 在 Type of Display 選擇欄確認 'Legend'
- 8. 點擊 Apply 鍵

圖32. 彎矩的影響線

如圖33.利用 Moving Load Tracer 查看車輛移動所引起的的反力。

♀ Moving Load Tracer 可在進行車輛移動載重 結構分析時對所得到的 結果予以使用。是根據 結果推算車輛的加載狀 態並將其以影響線(影響 面)的形式來表現的功 能。

- 點擊 □ Iso View 和 □ Initial View
 點擊 Select Plane
 在 Plane 表單選擇 'XY Plane' 並輸入節點 1 (Z Position = 1)
 點擊 □ Activate
 主選單 Results>Moving Load>Moving Tracer>Reactions
 在 Moving Load Cases 選擇欄選擇 'MVmax : MVL'
 在 Key Node 輸入欄輸入 '1'
 在 Scale Factor 輸入欄確認 '1.0'
 在 Components 選擇欄確認 'FZ'
- 11. 在 Type of Display 選擇欄確認 'Contour', 'Legend', 'Applied Loads'
- 12. 點擊 Apply 鍵

圖33. 利用 Moving Load Tracer 確認移動載重的施加位置

利用 Moving Load Tracer 查看車輛移動的位置 · 對梁單元 28 的 i 端點引起的移動 狀況。

- 1. 主選單 Results>Moving Load>Moving Tracer>Beam Forces/Moments
- 2. 在 Moving Load Cases 選擇欄選擇 'MVmax: MVL'
- 3. 在 Key Element 輸入欄輸入 '28'
- 4. 在 Scale Factor 輸入欄確認 '1.0'
- 5. 在 Parts 選擇欄確認 ' i '
- 6. 在 Components 選擇欄確認 'My'
- 7. 在 Type of Display 選擇欄確認 'Contour', 'Legend', 'Applied Loads'
- 8. 點擊 Apply 鍵

圖34. 利用 Moving Load Tracer 確認移動載重的施加位置

利用 M	oving Load Tracer 查看車輛移動的位置後,可將移動活載重轉換為靜態載重
作進一步	的結果驗證。
點擊 Ma	wing Load Tracer Function 中的 Write Min/Max Load to File 鍵將轉換的靜
態力資料	儲存於 MCT 檔·再利用執行 MCT Command Shell 將此靜態力作用於模型
中。	
1.	點擊 Write Min/Max Load to File
2.	在 Moving Load Converted to Static Load 對話框按 鍵存檔
3.	由 File>Exit 離開關閉 MIDAS/Test Editor 文字編輯工具
4.	主選單 Tools>MCT Command Shell 的 🖻 Open>File Name 開啟剛
	所儲存的 ' MVmaxMVLMy28.mct ' 檔案
5.	按 MCT Command Shell 對話視窗的 Run
6.	當出現詢問"Analysis/design results will be deleted; Continue?"訊息視
	窗時·按 Yes 鍵
7.	按 MCT Command Shell 對話視窗的 Close
8.	主選單 Load>Static Loads>Static Load Cases
9.	確認已加入由 Name 為 'MVmaxMVLMy28' 的靜態載重狀況
10.	點擊 Static Load Cases 對話框的 Close 鍵
11.	點擊 🎦 Analysis

圖35. 自動轉換動態力為靜態力

<u>例題 4 END</u>