

MIDAS MESHFREE 幾何非線性分析 扭力彈簧強制位移下壓

Simple, but Everything.

Step1. 匯入3D 模型

MeshFree支援各類CAD 格式

Parasolid (9 - 29) Files (*.x_t;*.xmt_txt;*.x_b;*.xmt_bin) ACIS (R1 - 2017 1.0) Files (*.sat;*.sab;*.asat;*.asab) STEP (AP203, AP214, AP242) Files (*.stp;*.step) IGES (Up to 5.3) Files (*.igs;*.iges) Pro-E (16 - Creo 3.0) Files (*.prt;*.prt.*;*.asm;*.asm.*) CATIA V4 (CATIA 4.1.9 - 4.2.4) Files (*.model;*.exp;*.session) CATIA V4 (CATIA 4.1.9 - 4.2.4) Files (*.model;*.exp;*.session) CATIA V5 (V5R8 - V5-6R2016) Files (*.CATPart;*.CATProduct) Solid Works (98 - 2017) Files (*.sldprt;*.sldasm) Unigraphics (11 - NX11) Files (*.prt) Inventor Part (V6 - V2017) Files (*.ipt) Inventor Assembly (V11 - V2017) Files (*.iam) Solid Edge (V18 - ST9) Files (*.par;*.asm;*.psm)

搜尋位置(I): 📃 扭力彈簧單件強制位移下壓回彈_MF 💿 🗸 👩 🌮 🖽 🔻	
名稱 修改日期 backup 2020/6/29 下午 02:05 1 扭力彈簧單件強制位移下壓回彈×T 2019/2/3 下午 02:30	類 檔 <u>×</u>
Step2.選擇匯入檔案	
本機	
《》 網路	
<	>
檔案名稱(N): 扭力彈簧單件強制位移下壓回彈.X_T 🛛 開啟	(0)
檔案類型(T): CAD Files(*.*) ~ 取》	肖
 □ 自動搜尋接觸面 ☑ 搜尋公差 5 mm 	

滑鼠右鍵,材料定義

拘束條件定義					
名稱 邊界	2				
選取		~			
點	己經選取 1	個幾何…			
對稱條件		~			
自由度拘束		~			
🗸 Tx	🗸 Ту	Tz			
Rx 🔽	🗸 Ry	🗸 Rz			
U		$ + \times$			

選取剛體中心點, 拘束Tx, Ty, Rx, Ry, Rz

格點定義		×			
幾何	Body(1)(1)(1)	\sim			
值		~			
	荿	۱ ۲			
●最大	○中間 ●最小				
	휹(數量)				
x	2				
Y	2				
Z	2				
	휹(尺寸)				
長度	1 mm				
幾何特徵詳細表示 (數值越低精度越高,計算量越大。)					
(0.1~1)	1				
2 提高計算	精度				
Q	✓ +	\times			

格點尺寸定義(1mm)

新增連續分析步

滑鼠右鍵,添加分析工況

註:可自訂工況名稱

拖曳邊界條件到第2分析步

分析工況控制

子工況-1和子工況-2開啓幾何非線性

開啓幾何非線性

分析工況控制	×			
○ ○				
非線性控制	^			
🔽 幾何非線性				
增量數	10			
┌ 收斂準則/容許誤差 ────				
位移	0.001			
▶ 載荷	0.001			
☑功	1e-006			
│└────────────────────────────────────				
每個 非等分增量步	✓ N 1			
非線性進階參數				
	$ \mathbf{v} + \mathbf{X} $			

結構系統驗證針對每個部件檢查邊界條件,模型較多部件時, 會額外佔用分析時間,可以考慮取消不進行檢查。

選擇實際變形顯示									
分析結	果 查詢 反	カー曲線圏	正 (結果檔 點結果比較	東際 比較結果 無網點	↓ 科學記號 ↓ 小數點位數	▼ 友 5 章	✔ 連續輪廓 ✔ 平滑雲圖 ✔ 特徴線視圖	 ✓ 刻度顯示 □ 最大 / 最小 ✓ 動畫 	
分析類型 子工況 Step 結果	<u>非線性分析-1</u> <u>非線性分析-1</u> 第1分析步 () 第2分析() 第2分析() 第2分析() 第2分析() 第2分析() 第2分析() 第2分析() 第2分析() 第2分析() 第2分析() 第2分析() 第2分析() 第2分析() 第2分析() 第2分析() 第2分析() 第1		分析频 子工ぶ Step 結果	型 非保険分子 INCR=21(INCR=2(C INCR=2(C INCR=3(C INCR=3(C INCR=3(C INCR=4(C INCR=5(C INCR=6(C INCR=7(C INCR=7(C INCR=10(C INCR=10(C INCR=11(C INCR=12(C INCR=13(C INCR=15(C INCR=15(C INCR=17(C INCR=19(C INCR=19(C INCR=11)(C INCR=10)(C INC	LOAD=1.000) AD=0.000) AD=0.000) AD=0.100) AD=0.150) AD=0.200) AD=0.200) AD=0.200) AD=0.300) AD=0.350) AD=0.400) OAD=0.450) OAD=0.550) OAD=0.600) OAD=0.600) OAD=0.750) OAD=0.750) OAD=0.750) OAD=0.800) OAD=0.900) OAD=0.900)	分析 子工 Step 結果	類別していていていた。		<u>異取</u>

MESH FREE

Te

0