Warping Effect (7th DOF)

Aug. 22, 2014

Midas IT

www.midasit.o

❑ When bending moment occurs in a beam element,
 → Law of plane maintenance is valid.

□ When shear force occurs in a beam element, → Law of plane maintenance is valid.

□ When twisting moment occurs in a beam element,

→ Law of plane maintenance is **not** valid due to Warping. (excepting for pipe & solid round section)

- ✓ Torsional Rigidity of Pipe & Solid Round Section = G * I_p
- ✓ Torsional Rigidity of Other Section = $1^{2\%}$ of G * I_p

Where, Ip: Polar moment of inertia, Ixx + Iyy

G: Shear modulus

CLASSIFICATION TORSION

Uniform Torsion: Member is allowed to warp freely

Torque is resisted entirely by St. Venant torsional shear stress.

St Venant Torsion, Tsv

Non-uniform Torsion: Member is not allowed to warp freely

Torque is resisted by St.Venant's torsional shear stress & Warping torsion

St Venant Torsion, Tsv + Warping Torsion, Tw

Uniform Torsion (Constant Torque : Ends are free to warp)

Fig. 5 Non uniform Torsion: Twisting of Non-Circular Section restrained against free warping (Constant Torque : End warping is prevented)

MIDAS

UNIFORM TORSION

Circular Section

$$T_{sv} = I_p G \, \frac{d\phi}{dz}$$

where,

- angle of twist
- G modulus of rigidity
- T_{sv} St. Venant's torsion.
- I_p the polar moment of inertia
- z direction along axis of the member.

Non-circular Section

Replace I_p by J, the torsional constant

For rectangular section, $J = C. bt^3$

For Plate Girder,

Where, b: breadth and thickness of the rectangle

t: thickness of the rectangle

C: constant depending upon (b/t) ratio and tends to 1/3 as b/t increase

Z

WARPING FUNCTION

- Displacement \checkmark $ux = r\theta sin\beta = \theta y$ $uy=r\theta cos\beta = \theta x$ $uz = \theta \Phi(x,y)$
- **Torsional Constant** \checkmark

$$J = I - \int_A \nabla \phi \cdot \nabla \phi \, dA.$$

- ✓ Non-Uniform torsion occurs when warping deformation is constrained.
- ✓ Warping restraint causes in-plane bending deformation of the flanges in addition to twisting.
- ✓ Bending deformation is accompanied by a shear force in each flange.

WARPING EFFECT (7TH DOF) **MIDAS IT**

NON-UNIFORM TORSION

Warping torsion

NON-UNIFORM TORSION

Total torsion

$$T_{n} = T_{sv} + T_{w}$$

$$T_{w} = -E\Gamma \frac{d^{3}\phi}{dz^{3}} = -E\Gamma \phi'''$$

$$T_{sv} = JG \frac{d\phi}{dz}$$
Torsional Rgidity
$$T_{n}(z) = GJ \frac{d\phi}{dz} - E\Gamma \frac{d^{3}\phi}{dz^{3}} = GJ\phi' - E\Gamma \phi'''$$
Warping Rigidity

NON-UNIFORM TORSION

□ Approximate method of torsion analysis for practical purpose

□ Bi-moment = Mf * h

BI-MOMENT METHOD

Middle Region

1. Calculate Mf using Bi-Moment or Table in the code

1. Cantilever	$\frac{L}{a} < 0.5$				0.5	≤ L a	≤ 2.0			$\frac{L}{a} > 2.0$
N N	$M_{fy} = \frac{NeL}{d_f}$		$M_{fy} = \frac{N}{c}$	d _f k ₁		$\phi_t = \frac{N}{C}$	ea SJ ^k 2			M _{fy} = Nea
		L a	0.5	1.0	1.5	2.0				$\phi_t = \frac{Ne}{GJ}[L - a]$
τy φ _t	$\phi_t = 0.32 \frac{\text{Nea}}{\text{GJ}} \left[\frac{\text{L}}{\text{a}} \right]^3$	k,	0.50	0.75	0.92	1.00				a Elw
		k2	0.040	0.237	0.566	1.000				a=√gj
2. Simple beam	$\frac{L}{a} < 1.0$	- 1		ang sina T	1.0	≤ L a	≤ 4.0		. 1	$\frac{L}{a} > 4.0$
NL	$M_{fy} = \frac{NeL}{4d_f}$	j.	$M_{fy} = \frac{N_f}{2}$	ea d _f k ₁	ie de la competencia de la com	$\phi_t = \frac{N}{G}$	ea k ₂	68	5-36 Y	$M_{fy} = \frac{Nea}{2d_f}$
	$\phi_{1} = 0.32 \frac{\text{Nea}}{[L]^3}$	La	1.0	1.5	2.0	2.5	3.0	3.5	4.0	$\phi_t = \frac{Ne}{GJ} \Big[\frac{L}{2} - a \Big]$
- - > M _N	GJL2aJ	k ₁	0.50	0.62	0.75	0.85	0.92	0.96	1.00	Elw
φt		k2	0.040	0.121	0.237	0.389	0.570	0.786	1.00	a=√ <u>G</u> j
. Continuous spans equal	$\frac{L}{a} < 2.0$			an an ta Baile	2.0	$\leq \frac{L}{a}$	≤ 8.0		11	$\frac{L}{a} > 8.0$
length,equally loaded	$M_{fy} = \frac{NeL}{8d_f}$		$M_{1y} = \frac{N_1}{2}$	ea d _f k ₁		$\phi_1 = \frac{N}{C}$	ea k2			$M_{fy} = \frac{Nea}{2d_f}$
	$\phi_{1} = 0.64 \frac{\text{Nea}}{[L]^3}$	L a	2.0	3.0	4.0	5.0	6.0	7.0	8.0	$\phi_t = \frac{2Ne}{GJ} \left[\frac{L}{4} - a \right]$
 - - −	GJ L 2a	k ₁	0.50	0.62	0.75	0.85	0.92	0.96	1.00	Elw
M _{fy} ¢,		k2	0.040	0.121	0.237	0.387	0.570	0.786	1.000	a≡√GĴ

2. Calculate Stress

 $\sigma_w = M_f/S$

V = T/d

$$\tau_w = 1.5V/bt$$

Normal stress = $\sigma_{bend} + \sigma_w$

Shear stress = $\tau_{bend} + \tau_w$

End Region

1. Calculate Stress

 $\boldsymbol{\tau}_{sv} = \boldsymbol{T}\boldsymbol{t} / \boldsymbol{J}$

Shear stress = $\tau_{bend} + \tau_{sv}$

MIDAS IT 7TH DOF – PRE-PROCESSING

CONSIDER WARPING EFFECT

Section Data	x
DB/User Value SRC Co Section ID 1	mbined PSC Tapered Composite
Name	● User ● DB KS ▼
	Sect, Name 🔹 💌 Built-Up Section
	Get Data from Single Angle DB Name KS Sect, Name
Z Å →⊳ y	H 0 m B1 0 m tw 0 m tf1 0 m
	B2 0 m tf2 0 m r1 0 m
	rz U m
Offset : Center-Center	Consider Shear Deformation, Consider Warping Effect(7th DOF)
Change Offset	
Show Calculation Results	OK Cancel Apply

Section Property dialog box

- When "Consider Warping Effect(7th DOF)" option is checked on, section stiffness is calculated using **Gen Section Library** (PBeamLmesh.dll).
- When the option is not checked on, section properties and analysis results are identical to the previous version.
- For Tapered Section, section property is calculated using the equivalent section of i-end and j-end when Warping Effect is considered.

Addition of Section Properties for Warping

- When "Consider Warping Effect(7th DOF)" option is checked on, following constants are additionally plotted.
- Iw : Warping Constant
- w1, w2, w3, w4 : Warping Function at Point 1,2,3, and 4
- yxy1, yxy2, yxy3, yxy4 : Shear Strain due to Twisting Moment
- yxz1, yxz2, yxz3, yxz4 : Shear Strain due to Twisting Moment

€

CONSIDER WARPING EFFECT

Create Elements 🔹
Start Number
Node Number : 1
Element Number : 1
Element Type
General beam/Tapered beam 🔻
y N1
Material
No, Name
I I: SM400 ▼
No. Name
1 1: 7자유도 적용단단▼
Orientation
Beta Angle Ref, Point
Het, Vector
have a service the

> 7th DOF is applicable to "General beam/Tapered beam".

CONSIDER WARPING EFFECT IN BOUNDARY CONDITIONS

< Support >

< Beam End Release >

CONSIDER WARPING EFFECT IN REACTIONS

< Reaction Forces/Moments >

Reaction Forces/Moments 💌
Load Cases/Combinations ST: test Step
Components C FX C FY C FZ ⊙ FXYZ C MX C MY C MZ C MXYZ C W □ Local (if defined)
Type of Display Values Legend Arrow Scale Factor: 1,000000
Apply Close

< Search Reaction Forces/Moments>

Message Window
NODE NUMBER=1 FX= 5,59069E+001 FY= 0,00000E+000 FZ= 2,82611E+002 FXYZ= 2,88088E+002 MX= 0,00000E+000 MY= 8,99085E+001 MZ= 0,00000E+000 W= 1.11111E+001

CONSIDER WARPING EFFECT - DEFORMATION

< Displacement Contour >

Displaceme	Displacement Contour 💌							
Load Cases/Combinations MVmax: test Step -								
© Displacement C Velocity C Acceleration C Absolute Acceleration								
Component C DX C RX C Rw C DXY C DXY	C DY C DY C RY C DYZ	O DZ O RZ O DXZ						

< Search Displacement >

Message Window				
NODE NUMBER=4	DV-0 00000E+000	D72 73802F-005	DVV7-2 73902E_005	
RX=1.49363E-004	RY=1.79899E-005	RZ=0.00000E+000	Rw=1.11111E-005	

MIDAS IT 7TH DOF – POST-PROCESSING

CONSIDER WARPING EFFECT - DEFORMATION

< Beam Forces/Moments > < Beam Diagrams >

Beam Forces/Moments 💽							
Load Cases/Combinations							
Step							
Components							
Part Total							
OFx OFy OFz							
<u> </u>							
⊂W ∩Mt ∩Mw							
Show Truss Forces							

- Component
 - W (Bi-Moment)
 - Mt (Twisting Moment)
 - Mw (Warping Moment)

Unit: W (Bi-Moment) - N*m^2

7TH DOF – POST-PROCESSING

CONSIDER WARPING EFFECT - STRESSES

< Beam Stresses > < Beam Stresses Diagram >

Beam Stresses Diagram 💌 📖
Load Cases/Combinations
ST: 3 •
Step
🔽 Max/Min Diagram
Components
Part Total 💌
C Sax C Ssy C Ssz
C Sby C Sbz C Combined
Tth DOF
Sax(Warping)
-Sax(VSax(Warping)
Ssy(Mt)
C Ssz(Mt)
C Ssz(Mw)
Combined(Ssy)
○ 4 (-y,-z) 4 3

Component "7th DOF"

- Sax(Warping) : Warping Normal Stress
- Ssy(Mt): Twisting Moment Shear Stress(TXY)
- Ssy(Mw): Warping Moment Shear Stress(Txy)
- Ssz(Mt) : Twisting Moment Shear Stress(Txz)
- Ssz(Mw) : Warping Moment Shear Stress(Txz)
- Combined(Ssy): "Transverse + Twisting Moment + Warping Moment" Shear Stress(Txy)
- Combined(Ssz): "Transverse + Twisting Moment + Warping Moment" Shear Stress(Txz)

*** "Combied(Normal) : Axial + Moment + Warping**" when Combined is selected

- W/O warping= Axial + Moment
- With Warping = Axial + Moment + Warping

- ex) Sax(Warping:

Sax(Warping)	th omani)
O Maximum	1 1+2 2
○ 1 (-y,+z)	
○ 2 (+y,+z)	
	+ý
○ 4 (-y,-z)	4 3

CONSIDER WARPING EFFECT - TABLE

< Reaction Table >

	Node	Load	FX (kN)	FY (kN)	FZ (kN)	MX (kN∙m)	MƳ (kN∙m)	MZ (kN∙m)	W (kN·m)
•	1	test	0.000000	0.000000	100.000000	-100.000000	-500.000000	0.000000	0.000000
	SUMMATION OF REACTION FORCES PRINTOUT								
		Load	FX (kN)	FY (kN)	FZ (kN)				
		test	0.000000	0.000000	100.000000				

< Displacement Table >

	Node	Load	DX (m)	DY (m)	DZ (m)	RX ([rad])	RY ([rad])	RZ ([rad])	Rw ([rad])
$\mathbf{+}$	1	test	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	2	test	0.000000	0.000000	-0.000113	0.000373	0.000028	0.000000	0.000000
	3	test	0.000000	0.000000	-0.000009	0.000075	0.000010	0.000000	0.000000
	4	test	0.000000	0.000000	-0.000027	0.000149	0.000018	0.000000	0.000000
	5	test	0.000000	0.000000	-0.000052	0.000224	0.000024	0.000000	0.000000
	6	test	0.000000	0.000000	-0.000082	0.000299	0.000027	0.000000	0.000000

< Beam Force Table >

Elem	Load	Part	Axial (kN)	Shear-y (kN)	Shear-z (kN)	Torsion (kN·m)	Moment-y (kN·m)	Moment-z (kN·m)	Bi-Moment (kN·m)	T-Moment (kN-m)	W-Moment (kN·m)
1	test	[[1]	0.00	0.00	-100.00	100.00	-500.00	0.00	100.00	-500.00	0.00
1	test	J[3]	0.00	0.00	-100.00	100.00	-400.00	0.00	100.00	-400.00	0.00
2	test	[3]	0.00	0.00	-100.00	100.00	-400.00	0.00	100.00	-400.00	0.00
2	test	J[4]	0.00	0.00	-100.00	100.00	-300.00	0.00	100.00	-300.00	0.00

Warping Moment

Twisting Moment

CONSIDER WARPING EFFECT - TABLE

< Beam Stress(7th DOF) Table >, < Beam Stress(7th DOF)(PSC) Table >

	Elem	Load	Part	Section Position	Sax(Warping) (kN/m^2)	Ssy(Mt) (kN/m^2)	Ssy(Mw) (kN/m^2)	Ssz(Mt) (kN/m^2)	Ssz(Mw) (kN/m^2)	Cb(Ssy) (kN/m^2)	Cb(Ssz) (kN/m^2)
◄	1	1	[[1]	Pos-1	6.78e+007	0.00e+000	4.53e+005	0.00e+000	1.23e+005	4.53e+005	3.17e+004
	1	1	J[2]	Pos-1	3.51e+007	-1.24e+007	2.35e+005	-6.85e+006	6.39e+004	-1.21e+007	-6.87e+006
	2	1	[2]	Pos-1	3.51e+007	-1.24e+007	2.35e+005	-6.85e+006	6.39e+004	-1.21e+007	-6.87e+006
	2	1	J[3]	Pos-1	1.82e+007	-1.88e+007	1.22e+005	-1.04e+007	3.31e+004	-1.87e+007	-1.04e+007
	3	1	[3]	Pos-1	1.82e+007	-1.88e+007	1.22e+005	-1.04e+007	3.31e+004	-1.87e+007	-1.04e+007
	3	1	J[4]	Pos-1	9.41e+006	-2.21e+007	6.29e+004	-1.22e+007	1.71e+004	-2.20e+007	-1.23e+007
	4	1	[4]	Pos-1	9.41e+006	-2.21e+007	6.29e+004	-1.22e+007	1.71e+004	-2.20e+007	-1.23e+007
	4	1	J[5]	Pos-1	4.87e+006	-2.38e+007	3.26e+004	-1.32e+007	8.87e+003	-2.38e+007	-1.33e+007
	5	1	[5]	Pos-1	4.87e+006	-2.38e+007	3.26e+004	-1.32e+007	8.87e+003	-2.38e+007	-1.33e+007
	5	1	J[6]	Pos-1	2.52e+006	-2.47e+007	1.69e+004	-1.37e+007	4.59e+003	-2.47e+007	-1.38e+007
	6	1	[6]	Pos-1	2.52e+006	-2.47e+007	1.69e+004	-1.37e+007	4.59e+003	-2.47e+007	-1.38e+007
	6	1	J[7]	Pos-1	1.30e+006	-2.52e+007	8.77e+003	-1.39e+007	2.39e+003	-2.51e+007	-1.40e+007
	7	1	[7]	Pos-1	1.30e+006	-2.52e+007	8.77e+003	-1.39e+007	2.39e+003	-2.51e+007	-1.40e+007
	7	1	J[8]	Pos-1	6.63e+005	-2.54e+007	4.60e+003	-1.41e+007	1.25e+003	-2.54e+007	-1.41e+007
	8	1	[8]	Pos-1	6.63e+005	-2.54e+007	4.60e+003	-1.41e+007	1.25e+003	-2.54e+007	-1.41e+007
	8	1	J[9]	Pos-1	3.25e+005	-2.55e+007	2.51e+003	-1.41e+007	6.82e+002	-2.55e+007	-1.42e+007
	9	1	[[9]	Pos-1	3.25e+005	-2.55e+007	2.51e+003	-1.41e+007	6.82e+002	-2.55e+007	-1.42e+007
	9	1	J[10]	Pos-1	1.33e+005	-2.56e+007	1.53e+003	-1.41e+007	4.18e+002	-2.56e+007	-1.42e+007

APPLICABLE ANALYSIS TYPE

< 1. Static Analysis>

- <2. Eigenvalue Analysis >
- Results Tables > Vibration Mode Shape
- < 3. Response Spectrum Analysis>
- Results > Nodal Result of RS
- Results Tables > Nodal Result of RS
- < 4. Construction Stage Analysis >
- Results > Bridge Girder Diagram
- Results Tables > Composite Section for C.S > Beam Force > Beam Stress
- Results Tables > Construction Stage > Beam Section Properties at Last Stage