

New Paradigm of CAE,

分析!!沒有學不會的!! MeshFree免網格分析軟體

台灣邁達斯 翁嘉駿 jim.weng@midasuser.com.tw

2D 繪圖軟體

比 3D 繪圖軟體還簡單的分析軟體

單件-托架結構分析

Simple, but Everything.

托架結構分析-操作影片

可靠的分析(MeshFree VS. ANSYS)

MeshFree VS.ANSYS結果分析對比

結果 軟體	變形/mm	應力/MPa	誤差
MeshFree	0.0395	2.922	變形: 4.3%
ANSYS	0.0413	3.049	應力: 4.1%

可靠的分析(MeshFree VS. Abaqus)

A 3D dial bracket structure-IBM (MeshFree)vs.FEM(Abaqus)

參考文獻:Ravi K. Burla and Ashok V. Kumar. Implicit boundary method for analysis using uniform B-spline basis and structured grid. *Int. J. Numer. Meth. Engng 2008;* **76:1993-2028**

免網格分析軟體

www.midasuser.com.tw

MIDAS&三星公司共同開發

採用NAFEMS(國際有限元工程師協會)提供的標準模型對MeshFree軟件進行驗證, 將計算結果與現有的FEM計算結果進行對比,兩者的誤差在4%以內。

用戶名單

三步驟完成分析

STEP1

導入CAD

STEP2

輸入荷載和邊界條件

STEP3

查看分析结果

全中文化&圖形化界面

免網格&直接計算

NIVIDA 3D顯示技術

支援標準3D CAD格式

1. 標準CAD格式:

ACIS(*.SAT), Parasolid (*.X_T), STEP(*.STP), IGES(*.igs)

2. 3D CAD各別格式: SOLIDWORKS(*.SLDPRT)、 PRO/E(.PRT)、CATIA V4~V5、UG、Inventor、 Solid Edge

最適合機構工程師的分析軟體

直觀操作

直觀操作&中文化

免網格分析軟體

www.midasuser.com.tw

FEA(有限元素法))

- 生成網格時需要考慮模型各種形狀
- 為了生成高品質的網格,需要進行簡化/清理工作。
- 經常會遇到生成網格問題(無法生成高品質的網格以及自動網格化功能的局限性)

IBM(隱式邊界法)

- 直接進行分析
- 不管3D模型有多複雜,照樣可進行分析。
- 省下無效率清理幾何&網格化時間
- 專門為設計人員而開發的革命性設計分析工具

整機-有限元素模型(未清理幾何)

節點/元素數量

G:299 N:24,132,599 E:16,043,669

立柱-網格模型(局部放大)

底座-網格模型(局部放大)

有限元素模型(清理幾何)-1

立柱-3D模型-清理後

混合網格(六面體+五面體) www.midasuser.com.tw

有限元素模型(清理幾何)-2

夾具台-混合網格(六面體+五面體)

主軸頭-混合網格(六面體+五面體)

整機分析-免網格

MeshFree-IBM(隱式邊界法)

〈內部採用擴展有限元法〉 〈邊界區域採用邊界法〉 X-FEM **BEM** 黃色區域 紅色節點和圓邊交匯區域 Step1.採用近似階梯函數計算出邊界數據

Step2.邊界數據代入X-FEM矩陣計算

自由度拘束問題的部件

分析前檢查接觸和邊界條件

※檢查分析模型

→檢查奇異點錯誤

中文化-錯誤提示

- 。[錯誤] 邊界條件的定義不夠充分。[整體剛體自由度(66), 排列(6)]
- > [錯誤] 邊界條件定義不正確。

組合件-輪框

Simple, but Everything.

材料: AL6061

組合件-輪框-操作影片

MeshFree操作影片

腳踏車線性結構分析

預力模態分析

模態分析

熱傳分析

熱傳熱應力分析

拓樸最佳化分析

New Paradigm of CAE,

Simple MeshFree-免網格分析軟體

http://www.midasuser.com.tw/meshfree/index.aspx

標準版

進階版

線性結構分析

熱應力分析 拓樸最佳化 統勞分析

註:免費版(無材料庫/限制Ram 0.5G)

New Paradigm of CAE,

MeshFree-免網格分析軟體

MeshFree標準版-試用申請

MeshFree台灣網站

http://www.midasuser.com.tw/meshfree/index.aspx

MeshFree專業版-試用申請

1.試用申請資料必須確實填寫,會有專人連絡。
 2.台灣邁達斯有權決定,是否提供使用者申請試用。

3	· · · · · · · · · · · · · · · · · · ·
O.	26受1百利
3	重絡手機* (ex:0900123456)
1	于職公司/學校*
THE	部門科系*
+	也址"
,	INE ID*

基座組件-多載荷靜剛度分析

多載荷靜剛度分析-操作影片

基座組件-靜剛度拓樸改善設計

最大變形量1.189(mm)

最大應力485.5(MPa)

是大變形量0.4434(mm) FIRE 29 (GB)-1999-1960 (B) GEALGRAFITYZ 1720-1970 1-4,8777-021

拓樸設計

最大應力308.3(MPa)

www.midasuser.com.tw

基座組件-靜剛度拓樸改善設計

基座組件-靜剛度拓樸改善設計

設計區:可變更的範圍

拓樸設計建議

設計區域-材料分佈建議

www.midasuser.com.tw

拓樸改善設計-操作影片

全新的CAE免網格分析軟體,-MeshFree

Mesh Free標準版

- 1.線性結構
- 2.模態分析
- 3.熱傳&熱應力分析
- 4. 拓樸最佳化設計
- 5.線性動態
- 6.瞬態熱傳&熱應力分析

MeshFree進階版

- 1.線性結構
- 2.模態分析
- 3.熱傳&熱應力分析
- 4.拓樸最佳化設計
- 5.線性動態
- 6.瞬態熱傳&熱應力分析
- 7.非線性分析
- 8.複合/橡膠材料分析
- 9.非線性動態分析
- 10.多體動力學分析
- 11.尺寸最佳化
- 12.CFD分析

Thank you!!

Simple, but Everything.

